
PhD Thesis

Diss. ETH No. 29858

Neural Scene Representations for
3D Reconstruction and Scene Understanding

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Songyou Peng
Erasmus Mundus MSc in Vision and Robotics (VIBOT)

Heriot-Watt University / Universitat de Girona / Université de Bourgogne

Born on 10.07.1992
Citizen of China

accepted on the recommendation of

Prof. Dr. Marc Pollefeys, examiner
Prof. Dr. Andreas Geiger, co-examiner

Prof. Dr. Vincent Sitzmann, co-examiner
Prof. Dr. Leonidas J. Guibas, co-examiner

2023

ii

Abstract

In an era where machines are increasingly integrated into our daily lives,
their ability to perceive and understand the three-dimensional world be-
comes of great importance. Central to this capability is the scene represen-
tation, which translates sensory data into compact, detailed, and holistic
descriptions of the environment. While deep learning, particularly Con-
volutional Neural Networks (CNNs), has revolutionized many facets of
computer vision, its primary focus remains on 2D information. This thesis
delves into the challenges and potential of transitioning these technologies
to 3D environments, aiming to bridge the gap between machine perception
and human-like spatial understanding.

Our primary objective is to pioneer the development of neural scene rep-
resentations tailored for accurate 3D reconstruction and comprehensive 3D
scene understanding. We start by introducing a scalable scene representa-
tion tailored for deep-learning-based 3D reconstruction. This representa-
tion is capable of capturing 3D shapes in a continuous, resolution-agnostic
fashion, effectively addressing the constraints of traditional explicit-based
methods. Next, by incorporating a differentiable point-to-mesh layer, we
present a lightweight representation that ensures high-quality reconstruc-
tion with rapid inference, addressing the need for speed in real-world ap-
plications. Furthermore, we explore the realm of dense visual Simultaneous
Localization and Mapping (SLAM) with a system that employs hierarchi-
cal neural implicit representations. This approach enables detailed recon-
struction in large-scale indoor scenarios, pushing the boundaries of what’s
achievable with current SLAM systems. Lastly, our research culminates in
the development of a unified scene representation for a broad spectrum of
3D scene understanding tasks, bypassing the need for costly 3D labeled
data.

iii

In conclusion, this thesis presents a series of advancements in neural scene
representations, offering solutions that not only enhance 3D reconstruction
capabilities but elevate the level of 3D scene understanding, bringing us a
step closer to achieving machine perception that mirrors human cognition.

iv

Zusammenfassung

In einer Zeit, in der Maschinen zunehmend in unseren Alltag integriert
werden, spielt ihre Fähigkeit, die dreidimensionale Welt wahrzunehmen
und zu begreifen, eine bedeutende Rolle. Die Szenendarstellung ist von
zentraler Bedeutung für diese Fähigkeit, da sie Sensordaten in kompak-
te, detaillierte und holistische Beschreibungen der Umgebung umwandelt.
Obwohl Deep Learning, insbesondere Convolutional Neural Networks
(CNNs), viele Facetten der Computer Vision revolutioniert hat, liegt der
Schwerpunkt nach wie vor auf 2D-Daten. Diese Dissertation befasst sich
mit den Herausforderungen und dem Potenzial der Übertragung dieser
Technologien auf die 3D-Welt, um die Lücke zwischen maschineller Wahr-
nehmung und menschenähnlichem Raumverständnis zu schliessen.

Unser primäres Ziel ist es, Pionierarbeit bei der Entwicklung neuronaler
Szenendarstellungen zu leisten, die auf eine genaue 3D-Rekonstruktion
und ein umfassendes 3D-Szenenverständnis zugeschnitten sind. Wir
beginnen mit der Implementierung einer skalierbaren Szenendar-
stellung, die für Deep-Learning-basierte 3D-Rekonstruktion ausge-
richtet ist. Dies ermöglicht es, 3D-Formen in einer kontinuierlichen,
auflösungsunabhängigen Art und Weise zu erfassen, wodurch die Be-
schränkungen traditioneller, explizit-basierter Methoden effektiv angegan-
gen werden. Als Nächstes präsentieren wir durch die Einbeziehung einer
differenzierbaren Punkt-zu-Mesh-Schicht eine leichtgewichtige Darstel-
lungsmethode, die eine qualitativ hochwertige Rekonstruktion mit schnel-
ler Inferenz gewährleistet und so dem Bedarf an Geschwindigkeit in realen
Anwendungen gerecht wird. Zusatzlicht untersuchen wir den Bereich der
dichten visuellen Simultaneous Localization and Mapping (SLAM), mit
einer Methode, die hierarchische neuronale implizite Repräsentationen
verwendet. Dieser Ansatz ermöglicht eine detaillierte Rekonstruktion in

v

grossflächigen Innenraumszenarien und erweitert die Grenzen dessen, was
mit aktuellen SLAM-Methoden erreicht werden kann. Schliesslich kulmi-
niert unsere Forschung in der Entwicklung einer einheitlichen Szenendar-
stellung für ein breites Spektrum von 3D-Szenenverständnisaufgaben und
umgeht die Notwendigkeit kostspieliger 3D-beschrifteter Daten.

Insgesamt präsentiert diese Arbeit eine Reihe von Fortschritten in der neu-
ronalen Szenendarstellung. Dabei bietet sie Lösungen, die nicht nur die 3D-
Rekonstruktionsfähigkeiten verbessern, sondern auch das Niveau des 3D-
Szenenverständnisses anheben, womit sie uns einen Schritt näher an eine
maschinelle Wahrnehmung bringt, die die menschliche Kognition wider-
spiegelt.

vi

Acknowledgments

As I reflect on my PhD journey, it is the remarkable individuals and groups
that stand out – those with whom I have shared unforgettable memories.

Advisors. I wish to express my deepest gratitude to my PhD supervisors
Prof. Marc Pollefeys and Prof. Andreas Geiger for offering me the priv-
ileged opportunity to pursue my PhD at two of the world’s top research
groups. Marc, your trust in me and the autonomy you granted inspired
me to independently approach my research with creativity. Andreas, you
not only have a remarkable vision of identifying key research questions,
but also your insightful critiques consistently ensure our research stays on
track, ultimately achieving the highest quality.

Collaborators. I am deeply grateful to Michael Niemeyer and Lars
Mescheder for the invaluable guidance and continuous support on my first
own project, which set the foundation for my entire PhD. Michael, your
patience in guiding me was exceptional. Every discussion with you was a
lesson for me. Throughout my PhD, having you as a brilliant collaborator,
role model, office mate, and a cherished friend, has truly been a privilege.
Lars, you are incredibly smart yet so humble, and always a joy to chat with.
Thank you so much for all the sincere advice, both in and beyond research.

I am also very grateful to Chiyu “Max” Jiang, my favored collaborator and
treasured friend. Whenever I am in doubt, you always come through with
multiple solutions. And during those tough times, your comforting words
and encouragement have been a guiding light, turning challenges into op-
portunities.

To Zihan Zhu, thanks for being so accepting as I took initial advisory steps.
It is my great honor to work with such a talented student like you.

vii

Special thanks also go to Shaohui Liu and Zhaopeng Cui, for bringing me
into your project at the very beginning of my PhD and opening doors to a
promising area that I have passionately pursued ever since.

My internships were enriched and made truly unforgettable due to
the enormous support from numerous collaborators, especially Tom
Funkhouser and Kyle Genova from Google Research, as well as Michael
Zollhoefer and Shunsuke Saito from Meta Reality Labs Research.

Big thanks to Zehao Yu, Lixiang Lin, Victor Larsson, Martin R. Oswald,
Yiyi Liao, Michael Oechsle, Christian Reiser, Rui Huang, Haiwen Huang,
and many other brilliant collaborators. Truly, You are the reason my col-
laborative spirit thrives. It was also very privileged to (co-)mentor some
talented and highly motivated students. I have learned so much and got
inspired by Lei Li, Weining Ren, Mirlan Karimov, Gonca Yilmaz, Shengqu
Cai, Severin Pfister, Weirong Chen.

I owe a profound debt of gratitude to Prof. Peter Sturm, who brought me to
the world of computer vision and showed me the beauty of research. Your
influence is the reason for my decision to dive into research and embark on
this PhD journey. Without you, my path would have been vastly different.
You are a role model for me in every way. I truly appreciate our friendship
and your mentorship.

Colleagues, Friends, and Family. Reflecting on these 4 years of my PhD
journey, doing research is only a part of the story. I would not have come
this far without the support of incredible colleagues, dear friends, and lov-
ing family.

My heartfelt gratitude is reserved for my peers at AVG – Aditya, Anpei,
Apratim, Axel, Bernhard, Bozidar, Caro, Christian, Chuqiao, Despoina,
Gege, Haiwen, Haofei, Haoyu, Joo Ho, Kashyap, Katja, Katrin, Kerstin,
Lynn, Markus, Niklas, Naama, Shaofei, Stefano, Takeru, Xu, Zehao. Our
countless brainstorming sessions, inspiring discussions, coffee breaks, late-
night drinkings, and of course tree tree-climbing and epic fun in Greece are
memories I will treasure forever. AVG for me has been more than a group,
but a home where I have a special bond.

viii

My deep gratitude extends to the current and past members of CVG – Ayse,
Boyang, Daniel B, Daniel T, Denys, Fangjinhua, Francis, Hermann, Iago,
Ian, Iro, Jonas, Julia, Katarı́na, Linfei, Luca, Marcel, Mihai, Paul-Edouard,
Peidong, Petr, Philipp, Rémi, Sandro, Silvan, Taein, Yao, Zador, Zuoyue,
and Zuria. I really enjoyed all the social Thursdays, group lunches, and ski
retreats we had together. Furthermore, I would like to send a hearty thanks
to the fun individuals at VLG, IGL, AIT, and CVL. Your presence made my
time in Zurich vibrant and memorable.

Outside the lab, my life would have felt incomplete without the incredible
groups of friends from Zurich, Tübingen, and the US. I cherish all the pre-
cious moments shared with the AVG Bachelors group, MPI Chinese crew,
Research4Food, the lively Chitchat WeChat group, the Chopsticks fan club,
the D-Lab gangster, and Googleplex dinner squad. Also, to Feiyi, thank
you for being by my side through the up-and-down carousel of a signifi-
cant part of my PhD, and I have grown as a better individual because of
our time together. I sincerely wish you all the best.

Finally, to my parents, your love and faith in me have been my strongest
strength. Your kindness, tolerance, and patience have shaped me into the
person I am. To my grandpa, watching from the heavens, I hope I made
you proud.

ix

x

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents xi

List of Figures xv

List of Tables xxiii

Introduction 1
1.1 Motivation . 1
1.2 Research Questions and Challenges 3
1.3 Contributions . 5

1.3.1 3D Reconstruction with Scalable Neural Representa-
tions . 5

1.3.2 3D Reconstruction with a Differentiable Poisson Solver 6
1.3.3 SLAM with Scalable Neural Representations 7
1.3.4 3D Scene Understanding with Large Vision Language

Models . 7
1.4 Outline . 9
1.5 Publications . 10

Background 13
2.1 3D Shape Representations . 13

2.1.1 Voxel Grids . 14
2.1.2 Point Clouds . 15

xi

Contents

2.1.3 Polygon Meshes . 16
2.1.4 Neural Implicit Representations 17

2.2 3D Reconstruction from Point Clouds 18
2.2.1 Optimization-Based Approaches 19
2.2.2 Learning-Based Approaches 20

2.3 3D Reconstruction from Multi-view Images 22
2.3.1 Approaches with Surface Rendering 23
2.3.2 Approaches with Volume Rendering 24

2.4 3D Scene Understanding . 26
2.4.1 Vision-Language Foundation Models 26
2.4.2 Open-Vocabulary 3D Scene Understanding 29

3D Reconstruction with Scalable Neural Representations 31
3.1 Introduction . 32
3.2 Method . 34

3.2.1 Encoder . 35
3.2.2 Decoder . 37
3.2.3 Occupancy Prediction 37
3.2.4 Training and Inference 38
3.2.5 Network Architectures 38
3.2.6 Implementation Details of Fully-Convolutional Model 40

3.3 Experiments . 41
3.3.1 Object-Level Reconstruction 45
3.3.2 Scene-Level Reconstruction 52
3.3.3 Ablation Study . 56
3.3.4 Reconstruction on Real-World Datasets 56

3.4 Discussion . 61

3D Reconstruction with a Differentiable Poisson Solver 65
4.1 Introduction . 66
4.2 Method . 69

4.2.1 Differentiable Poisson Solver 69
4.2.2 SAP for Optimization-based 3D Reconstruction . . . 71
4.2.3 SAP for Learning-based 3D Reconstruction 73

4.3 Experiments . 75
4.3.1 Optimization-based 3D Reconstruction 78

xii

Contents

4.3.2 Ablation Study for Optimization-based Setting 81
4.3.3 Learning-based Reconstruction 85
4.3.4 Ablation Study for Learning-based Setting 88

4.4 Conclusion and Discussion 90

SLAM with Scalable Scene Representations 93
5.1 Introduction . 94
5.2 Related Work . 96

5.2.1 Dense Visual SLAM 96
5.2.2 SLAM with Neural Implicit Representations 97

5.3 Method . 98
5.3.1 Hierarchical Scene Representation 98
5.3.2 Depth and Color Rendering 102
5.3.3 Mapping and Tracking 103
5.3.4 Initialization for Hierarchical Feature Grids 105
5.3.5 Keyframe Selection . 106
5.3.6 Frustum Feature Selection 107

5.4 Experiments . 108
5.4.1 Experimental Setup . 108
5.4.2 Evaluation of Mapping and Tracking 110
5.4.3 Performance Analysis 114
5.4.4 Ablation Study . 117

5.5 Conclusion and Discussion 120

3D Scene Understanding with Large Vision Language Models 123
6.1 Introduction . 124
6.2 Related Work . 128
6.3 Method . 130

6.3.1 Image Feature Fusion 130
6.3.2 3D Distillation . 132
6.3.3 2D-3D Feature Ensemble 133
6.3.4 Inference . 134
6.3.5 Implementation Details 134

6.4 Experiments . 135
6.4.1 Comparisons . 136
6.4.2 Ablation Studies & Analysis 141

xiii

Contents

6.5 Applications . 145
6.6 Conclusion and Discussion 149

Conclusion 165
7.1 Core Contributions & Applications 166
7.2 Future Work . 168

Appendix 171
A.1 Derivations for Differentiable Poisson Solver 171

A.1.1 Point Rasterization . 171
A.1.2 Spectral Methods for Solving PSR 172

References 175

xiv

List of Figures

2.1 Comparison on 3D Shape Representation. Image taken
from [144]. 14

2.2 Overview of CLIP. The diagram is taken from the original
paper [175]. 27

2.3 Comparison of Different 2D Vision-Language Foundation
Models. Image taken from OpenSeg [61]. 28

3.1 Convolutional Occupancy Networks. Traditional implicit
models (a) are limited in their expressiveness due to their
fully-connected network structure. We propose Convolu-
tional Occupancy Networks (b) which exploit convolutions,
resulting in scalable and equivariant implicit representa-
tions. We query the convolutional features at 3D locations
p ∈ R3 using linear interpolation. In contrast to Occupancy
Networks (ONet) [144], the proposed feature representation
ψ(p, x) therefore depends on both the input x and the 3D lo-
cation p. Fig. (c) shows a reconstruction of a two-floor build-
ing from a noisy point cloud on the Matterport3D dataset [23]. 33

xv

List of Figures

3.2 Model Overview. The encoder (left) first converts the 3D
input x (e.g., noisy point clouds or coarse voxel grids) into
features using task-specific neural networks. Next, the fea-
tures are projected onto one or multiple planes (Fig. 3.2a) or
into a volume (Fig. 3.2b) using average pooling. The con-
volutional decoder (right) processes the resulting feature
planes/volume using 2D/3D U-Nets to aggregate local and
global information. For a query point p ∈ R3, the point-wise
feature vector ψ(x, p) is obtained via bilinear (Fig. 3.2c and
Fig. 3.2d) or trilinear (Fig. 3.2e) interpolation. Given feature
vector ψ(x, p) at location p, the occupancy probability is pre-
dicted using a fully-connected network fθ(p, ψ(p, x)). 35

3.3 Object-Level 3D Reconstruction from Point Clouds (Part
1). Comparison of our convolutional representation to ONet
and PointConv on ShapeNet objects. 47

3.4 Object-Level 3D Reconstruction from Point Clouds (Part
2). Comparison of our convolutional representation to ONet
and PointConv on ShapeNet objects. 48

3.5 Object-Level 3D Reconstruction from Point Clouds (Part
3). Comparison of our convolutional representation to ONet
and PointConv on ShapeNet objects. 49

3.6 Object-Level 3D Reconstruction from Point Clouds (Part
4). Comparison of our convolutional representation to ONet
and PointConv on ShapeNet objects. 50

3.7 Object-Level 3D Reconstruction from Partial Point Clouds.
We show qualitative results on the ShapeNet “plane”, “car”,
“chair” and “table” categories. Our method correctly recon-
struct 3D shapes from partial point clouds. Note that the
models are trained in all classes. 52

3.8 Voxel Super-Resolution. Qualitative comparison between
our method and ONet using coarse voxelized inputs at reso-
lution 323 voxels. 53

3.9 Generalization (Chair→ Table). We analyze the generaliza-
tion performance of our method and the baselines by train-
ing them on the ShapeNet “chair” category and evaluating
them on the “table” category. 53

xvi

List of Figures

3.10 Scene-Level Reconstruction on Synthetic Rooms. Qualita-
tive comparison for point-cloud based reconstruction on the
synthetic indoor scene dataset. 55

3.11 Scene-Level Reconstruction on ScanNet. Qualitative results
for point-based reconstruction on ScanNet [44]. All learning-
based methods are trained on the synthetic room dataset and
evaluated on ScanNet. 57

3.12 Scene-Level Reconstruction on Matterport3D. Scene size:
18.5m× 9.6m× 2.2m. No. points in input point cloud: 60K. 60

3.13 Scene-Level Reconstruction on Matterport3D. Scene size:
11.3m× 6.6m× 4.0m. No. points in input point cloud: 100K. 61

3.14 Comparison of Building-Level Reconstruction on Matter-
port3D. Scene size: 19.7m× 10.9m× 9.4m. 200K points are
sampled from the GT mesh and used as the input to SPSR
and our method. 63

3.15 Comparison of Building-Level Reconstruction on Matter-
port3D. Scene size: 15.7m× 12.3m× 4.5m. 200K points are
sampled from the GT mesh and used as the input to SPSR
and our method. 64

4.1 Model Overview. Top: Pipeline for optimization-based sin-
gle object reconstruction. The Chamfer loss on the target
point cloud is backpropagated to the source point cloud w/
normals for optimization. Bottom: Pipeline for learning-
based surface reconstruction. Unlike the optimization-based
setting, here we provide supervision at the indicator grid
level, since we assume access to watertight meshes for super-
vision, as is common practice in learning-based single-object
reconstruction. 72

4.2 Optimization-based 3D Reconstruction on Thingi10K
Dataset [279]. Input point clouds are downsampled for
visualization. 79

4.3 Optimization-based 3D Reconstruction on SRB
Dataset [236]. Input point clouds are downsampled for
visualization. 80

xvii

List of Figures

4.4 Optimization-based 3D Reconstruction on D-FAUST
Dataset [10]. Input point clouds are downsampled for
visualization. 81

4.5 Ablation Study of Resampling Strategy. We show the opti-
mized point cloud and the reconstructed mesh without and
with the resampling strategy. Using the point resampling
strategy leads to a more uniformly distributed point cloud
and better shape reconstruction. 82

4.6 Ablation Study of Different Geometric Initialization un-
der Optimization Setting. We compare the reconstructions
of SAP initialized from a sphere and the coarse geometry.
The number below each image indicates the Chamfer Dis-
tance to GT mesh. 83

4.7 Ablation Study of the Gaussian Smoothing Parameter σ.
Low σ preserves details better but is prone to noise, while
high σ results in smooth shapes, but also leads to the loss of
detail. 84

4.8 3D Reconstruction from Point Clouds on ShapeNet. Com-
parison of SAP to baselines on 3 different setups. 87

4.9 Visualization of SAP Handling Noise and Outliers. The
length of arrows represents the magnitude of normals. SAP
point clouds are downsampled for better visualization. . . . 90

5.1 Multi-room Apartment 3D Reconstruction using NICE-
SLAM. A hierarchical feature grid jointly encodes geome-
try and color information and is used for both mapping and
tracking. We depict the final mesh and camera tracking tra-
jectory. 95

xviii

List of Figures

5.2 System Overview. Our method takes an RGB-D image
stream as input and outputs both the camera pose as well as
a learned scene representation in form of a hierarchical fea-
ture grid. From right-to-left, our pipeline can be interpreted
as a generative model which renders depth and color images
from a given scene representation and camera pose. At test
time we estimate both the scene representation and camera
pose by solving the inverse problem via backpropagating the
image and depth reconstruction loss through a differentiable
renderer (left-to-right). Both entities are estimated within an
alternating optimization: Mapping: The backpropagation
only updates the hierarchical scene representation; Tracking:
The backpropagation only updates the camera pose. For bet-
ter readability we joined the fine-scale grid for geometry en-
coding with the equally-sized color grid and show them as
one grid with two attributes (red and orange). 99

5.3 2D Illustration of Feature Grids. The lattice points cor-
respond to features. The optimized and fixed features are
shown in red and blue respectively. 107

5.4 Reconstruction Results on the Replica Dataset [198].
iMAP∗ refers to our iMAP re-implementation. 109

5.5 3D Reconstruction and Tracking on ScanNet [44]. The black
trajectory is from ScanNet [44], the red trajectory is the meth-
ods’ tracking result. We tried various hyperparameters for
iMAP∗ and present the best results which are mostly inferior. 113

5.6 3D Reconstruction and Tracking on a Multi-room Apart-
ment. The camera tracking trajectory is shown in red. iMAP∗

and DI-Fusion failed to reconstruct the entire sequence. We
also show the result of an offline method [38] for reference. . 115

5.7 Geometry Forecast and Hole Filling. The white-colored
area is the region with observations, and cyan indicates
the unobserved but predicted region. Thanks to the use of
coarse-level scene prior, our method has better prediction ca-
pability compared to iMAP∗. This in turn also improves our
tracking performance. 116

xix

List of Figures

5.8 Robustness to Dynamic Objects. We show the sampled pix-
els overlaid on an image with a dynamic object in the center
(left), our rendered RGB (middle) and our rendered depth
(right) to illustrate the ability of handling dynamic environ-
ments. The masked pixel samples during tracking are col-
ored in black, while the used ones are shown in red. 116

5.9 Robustness to Frame Loss. We show the results at frame
2100 after frame loss at frame 2000. The black trajectory is
the ground truth from ScanNet [44], and the red trajectory
indicates tracking results. The missing frames correspond to
the straight line in the middle. 117

5.10 Hierarchical Architecture Ablation. Geometry optimization
on a single depth image on Replica [198] with different archi-
tectures. The curves are smoothed for visualization. 118

5.11 Ablation on the Tracking Performance. ATE RMSE (cm) is
used as the metric. 120

6.1 Open-vocabulary 3D Scene Understanding. We propose
OpenScene, a zero-shot approach to 3D scene understand-
ing that co-embeds dense 3D point features with image pix-
els and text. The examples above show a 3D scene with sur-
face points colored by how well they match a user-specified
query – yellow is highest, green is middle, blue is low. Har-
nessing the power of language-based features, OpenScene
answers a wide variety of example queries, without labeled
3D data. 124

6.2 Key Idea. We co-embed 3D points with text and image pix-
els in the CLIP feature space (visualized with T-SNE [217])
which has structure learned from large image and text repos-
itories. 126

xx

List of Figures

6.3 Method Overview. Given a 3D model (mesh or point cloud)
and a set of posed images, we train a 3D network E3D to pro-
duce dense features for 3D points f3D with a distillation loss
L to multi-view fused features f2D for projected pixels. We
ensemble f2D and f3D based on cosine similarities to CLIP
embeddings for an arbitrary set of queries to form f2D3D.
During inference, we can use the similarity scores between
per-point features and given CLIP features to perform open-
vocabulary 3D scene understanding tasks. 131

6.4 Qualitative comparisons. Images of 3D semantic segmenta-
tion results on public indoor and outdoor benchmarks. . . . 138

6.5 Study of Our 2D-3D Ensemble Model. We show seman-
tic segmentation results and the feature selection of our en-
semble model on a Matterport3D house. We show the com-
parison between the 21-class and 160-class prediction. As
can be seen, when the number of classes increases, our en-
semble model selects more 2D features for the segmentation.
The reason can be that, when involving more fine-grained or
long-tailed classes, 2D image features can better understand
those fine-grained concept than purely from 3D point clouds.
Points using 2D features for final segmentation are marked
as red, while points with 3D features are marked as blue. . . 150

6.6 Open-vocabulary 3D Search. These images show the 3D
point within a database of 3D house models that best
matches a text query. The inset image shows a zoomed view
of the match. 151

xxi

List of Figures

6.7 Example object retrieval results (page 1 of 4). The query
text is in the left column, with the number of ground truth
instances in the Matterport test set listed in parentheses be-
low. The images show top matching 3D points in the Matter-
port test set ranked from left to right (note the red wireframe
sphere around the matching point in each image). Correct
matches are marked with green borders. The one incorrect
match is marked with a red border (in page 3 of 4). Others
marked with gray borders are not wrong (since there are no
further objects matching the query according to the ground
truth), but are shown as examples of near matches. 152

6.8 Example object retrieval results (page 2 of 4). See caption of
Figure 6.7 for details. 153

6.9 Example object retrieval results (page 3 of 4). See caption of
Figure 6.7 for details. 154

6.10 Example object retrieval results (page 4 of 4). See caption of
Figure 6.7 for details. 155

6.11 Image-based 3D Object Detection. A 3D scene (bottom left)
can be queried with images from Internet (top) to find match-
ing 3D points (bottom right). The colors of the image query
outlines indicate the corresponding matches in the 3D point
cloud. All 3 images are under Creative Commons licenses. . 156

6.12 Open-vocabulary 3D Scene Exploration. Examples of dis-
covering properties, surface materials, and activity sites
within a scene using open-vocabulary queries. For each ex-
ample, the query text is listed below (e.g., “Comfy”), and the
3D points are colored based on their cosine similarity to the
clip embedding for the query text – yellow is highest, green
is middle, blue is low, and uncolored is lowest. 157

6.13 Open-Vocabulary Queries for Common Object Types. . . 158
6.14 Open-Vocabulary Queries for Room Types. 159
6.15 Open-Vocabulary Queries for Activity Sites. 160
6.16 Open-Vocabulary Queries for Materials. 161
6.17 Open-Vocabulary Queries for Colors. 162
6.18 Open-Vocabulary Queries for Abstract Concepts. 163

xxii

List of Tables

3.1 Object-Level 3D Reconstruction from Point Clouds. Top:
We report GPU memory, IoU, Chamfer-L1 distance, Normal
Consistency, and F-Score for our approach (2D plane and 3D
voxel grid dimensions in brackets), the baselines ONet [144]
and PointConv on ShapeNet (mean over all 13 classes). Bot-
tom: The training progression plot shows that our method
converges faster than the baselines. 46

3.2 Voxel Super-Resolution. 3D reconstruction results from low
resolution voxelized inputs (323 voxels) on the ShapeNet
dataset (mean over 13 classes). 51

3.3 Scene-Level Reconstruction on Synthetic Rooms. Quanti-
tative comparison for reconstruction from noisy point clouds
on synthetic rooms. We do not report IoU for SPSR be-
cause SPSR generates only a single surface for walls and the
ground plane. To ensure a fair comparison to SPSR, we com-
pare all methods with only a single surface for walls/ground
planes when calculating Chamfer-L1 and F-Score. 54

3.4 Ablation Study on Synthetic Rooms. We compare the per-
formance of different feature aggregation strategies at sim-
ilar GPU memory in Table 3.4a and evaluate two different
sampling strategies in Table 3.4b. 58

3.5 Ablation Study on Network Architecture. We train our
3-plane method with a resolution of 642 on the ShapeNet
“chair” class with different numbers of ResNet blocks and
hidden feature dimensions. 59

xxiii

List of Tables

3.6 Scene-Level Reconstruction on ScanNet. Evaluation of
point-based reconstruction on the real-world ScanNet
dataset. As ScanNet does not provide watertight meshes, we
trained all methods on the synthetic indoor scene dataset.
Remark: In ScanNet, walls/floors are only observed from
one side. To not incorrectly penalize methods for predicting
walls and floors with thickness (0.01 in our training set), we
chose an F-Score threshold of 1.5% for this experiment. . . . 59

4.1 Overview of Different Shape Representations. Shape-As-
Points produces higher quality geometry compared to other
explicit representations [40, 52, 65] and requires significantly
less inference time for extracting geometry compared to neu-
ral implicit representations [144]. 68

4.2 Optimization-based 3D Reconstruction. Quantitative com-
parison on 3 datasets. Normal consistency cannot be eval-
uated on SRB as the provided GTs are unoriented point
clouds. Optimization time is evaluated on a single GTX
1080Ti GPU. 78

4.3 Ablation Study of Resampling Strategy. On all datasets,
our resampling strategy leads to improved results. For D-
FAUST, the increase is the lowest because the supervision
point clouds are noise free. Note that normal consistency
cannot be evaluated on SRB as this dataset provides only un-
oriented point clouds. 82

4.4 Training Progress. We show the Chamfer distance at differ-
ent training iterations evaluated in the Shapenet test set with
3K input points ((noise level=0.005). Our method uses ge-
ometric initialization and converges much faster than Con-
vONet. 84

4.5 3D Reconstruction from Point Clouds on ShapeNet. Quan-
titative comparison between our learning-based method and
baselines on the ShapeNet dataset (mean over 13 classes). . 86

xxiv

List of Tables

4.6 Ablation Study for Learning-based Setting. Top: Runtime
breakdown (encoding, grid evaluation, marching cubes) for
ConvONet vs. ours in seconds. Bottom: Ablation over the
number of offsets and 2D vs. 3D encoders. 89

5.1 Reconstruction Results for the Replica Dataset [198] (av-
erage over 8 scenes). iMAP∗ is our re-implementation of
iMAP. TSDF-Fusion uses camera poses from NICE-SLAM. . 110

5.2 Camera Tracking Results on TUM RGB-D [199]. ATE
RMSE [cm] (↓) is used as the evaluation metric. NICE-SLAM
reduces the gap between SLAM methods with neural im-
plicit representations and traditional approaches. We report
the best out of 5 runs for all methods in this table. The num-
bers for iMAP, BAD-SLAM, Kintinuous, and ORB-SLAM2
are taken from [200]. 111

5.3 Reconstruction Results for the Replica Dataset of Each
Scene. We provide results for each scene, an average of 5
runs. 112

5.4 Camera Tracking Results on ScanNet [44]. Our approach
yields consistently better results on this dataset. ATE RMSE
(↓) is used as the evaluation metric. 114

5.5 Computation & Runtime. Our scene representation does
not only improve the reconstruction and tracking quality, but
is also faster. The runtimes for iMAP are taken from [200]. . 115

5.6 Ablation on the Levels of Feature Grids. Reconstruction
results on Replica room-0 with ground truth camera pose. . 119

5.7 Ablation Study on LocalBA, Color Representation, and
Keyframe Selection. We investigate the usefulness of local
BA, color representation, as well as our keyframe selection
strategy. We run each scene 5 times and calculate their mean
and standard deviation of ATE RMSE (↓). We report the av-
erage values over 6 scenes in ScanNet [44]. 119

5.8 Ablation on Mapping Iterations. Reconstruction results on
Replica room-0 with ground truth camera poses. 121

xxv

List of Tables

6.1 Comparison on Zero-shot 3D Semantic Segmentation. We
show quantitative comparison between our method and the
most recent zero-shot 3D segmentation approach [147] and
a multi-view fusion baseline utilizing MSeg [112]. Follow-
ing [147], we take 4 classes (bookself, desk, sofa, toilet) out
of 20 classes from ScanNet validation set for evaluation. Un-
like [147], which requires training on 16 seen classes, our ap-
proach does not train with any 2D or 3D ground labels on
any classes. Still, both of our variants show significantly bet-
ter performance in both mIoU and mAcc. 136

6.2 Comparisons on Indoor and Outdoor Benchmarks. We
compare our method with both zero-shot and fully-
supervised baselines for semantic segmentation of one out-
door dataset (nuScenes) and two indoor datasets (ScanNet
and Matterport). Note that our zero-shot method performs
worse than SOTA approaches trained on this data, but com-
parable to supervised approaches from a few years ago, and
better than the previous SOTA zero-shot approach. Except
for [39], the numbers for fully-supervised methods (in gray)
are taken from previous papers. 139

6.3 Impact of Increasing the Number of Object Classes. Here
we show (a) mAcc on Matterport3D [23] with different num-
bers of classes K, and (b) mAcc within a window of 20 classes
ranked by decreasing numbers of examples in training set,
i.e. the right-most bars represent average of the 20 classes
with fewest examples (e.g., only 5 instances). Even though
the fully-supervised approach [39] is trained on each labelset
separately, while our model is fixed for all label sets, we can
handle the less-common / long-tail classes much better. . . 140

6.4 Comparison on 3DSSG [220] in Material Estimation. We
report the average of 10 material classes in test set. Classes
are sorted left-to-right by the number of training examples. 142

6.5 Ablation Study. Comparison of semantic segmentation per-
formance of different 3D features computed by our method.

. 142

xxvi

List of Tables

6.6 Domain Transfer with Open Vocabularies.. These results
show that it is possible to apply our models trained on Scan-
Net [44] to a novel 3D semantic segmentation task with a
different labelset in Matterport3D [23], and vice versa. Since
our trained models are task-agnostic (they predict only CLIP
features), they can be applied to arbitrary label sets without
retraining. 143

6.7 Behavior of Ensemble Model. Each entry indicates the per-
centage of points for which the Ensemble Model selects 2D
or 3D features for semantic segmentation on Matterport3D
for different numbers of classes K in the labelset. 144

6.8 Ablation on Multi-view Fusion Strategy. We report mIoU
and mAcc on ScanNet [44] with our OpenSeg feature fusion. 145

6.9 Open-vocabulary 3D Search Results. Each row depicts a
search of the Matterport3D test set for a class given as a text
query. The columns list the # of instances in the ground
truth for the whole dataset (# All), the # in the test set (#
Test, counting clusters of nearby objects as one when marked
with a ’*’), the # of top matches found with 100% precision
(# Found), the # of GT instances missed amongst those top
matches (# Missed), and the # newly discovered that were
not in the GT (# New). 146

xxvii

List of Tables

xxviii

C H A P T E R 1
Introduction

1.1 Motivation

With the rapid advancements in science and technology, machines
have seamlessly integrated into our daily lives. Now we find our-
selves living alongside machines capable of driving cars, organizing
our homes, and even assisting in medical surgeries. Central to these
advances is the machine’s ability to perceive and understand the sur-
rounding environment.

For machines to effectively perceive the three-dimensional world,
they need to model the surroundings from sensory data. In par-
ticular, accurately representing and reconstructing detailed geome-
try to their real-life counterparts is vital for applications in AR/VR,
autonomous driving, robotics, etc. Yet, creating detailed geometry
from scratch is a labor-intensive task, demanding specialized exper-
tise. Despite the emergence of advanced software and user-friendly
modeling tools, challenges like scalability and speed prohibit their

1

Introduction

large-scale deployment. How to accurately construct geometric de-
tails for large scenes at speed is a primary focus of this thesis.

Once the 3D environment is constructed accurately, it is equally im-
portant to understand the semantics, affordances, functions, and
physical properties of the reconstructed subjects. This kind of holistic
understanding is pivotal for machines to really interact intelligently
with humans in daily scenarios. However, traditional methods are
often tailored for specific tasks, such as 3D semantic segmentation
for a limited set of classes, leaving other tasks unaddressed. Achiev-
ing a broad understanding of 3D scenes is another objective of this
thesis.

Scene representation, i.e. translating observations of an environment,
either visual, haptic, auditory, or otherwise, into a concise model of
the environment [157, 194], is naturally crucial for machines aiming
to tackle complex tasks like accurately reconstructing a realistic scene
and having a comprehensive understanding of our world. Recent
advances in deep learning, particularly the emergence of Convolu-
tional Neural Networks (CNNs), offer a promising way of deriv-
ing robust and powerful scene representations, termed here as neural
scene representations.

CNNs have revolutionized many computer vision tasks, notably in
areas like image classification and depth estimation, showcasing the
potential of deep learning in processing visual information. How-
ever, much of their prowess is centered on processing 2D informa-
tion. Transitioning these 2D-focused technologies to 3D environ-
ments poses distinct challenges. To effectively model and under-
stand the complex world, it is essential for machines to learn 3D
scene representations, enabling a deeper spatial understanding akin
to how humans perceive the world.

The goal of this thesis is to pioneer the development of neural scene
representations, specifically tailored to accurately reconstruct and
comprehensively understand the 3D world. Our roadmap is marked
with clear milestones that are all tied together. First, we want to

2

1.2 Research Questions and Challenges

develop a scalable scene representation capable of faithfully recon-
structing detailed 3D geometry, spanning from objects to large-scale
scenes. Next, with the integration of a novel differentiable point-to-
mesh layer, we can represent detailed shapes using just lightweight
point clouds, and speed up the 3D reconstruction process. Third, we
also investigate a hierarchical neural scene representation that em-
powers dense RGB-D SLAM applications, specifically for large in-
door scenarios. Once obtaining the 3D reconstruction of a scene, the
final piece of the thesis is to produce 3D neural scene representations
for a plethora of 3D scene understanding tasks, leveraging only a 2D
pre-trained model, thus bypassing the need for any costly 3D labeled
data.

Overall, this thesis investigates various neural scene representations
to produce detailed 3D scene reconstruction efficiently, and subse-
quently pushes the boundary of 3D scene understanding to another
level. In the next section, we will delve into the actual problems and
challenges.

1.2 Research Questions and Challenges

In this thesis, we are interested in developing neural scene represen-
tations for two different but closely related topics: 3D reconstruc-
tion and 3D scene understanding. We present the following research
questions that we try to address in this thesis:

Research Question 1: What shape representation is scalable and
suitable for detailed 3D reconstruction?

Shape representations are pivotal for learning-based 3D reconstruc-
tion. Explicit shape representations, such as voxels, point clouds,
or meshes, have been traditionally favored due to their simplicity.
However, each has its limitations: voxels are limited in terms of reso-
lution due to large memory requirements, point clouds discard topo-
logical relationships, and predicting mesh-based representations di-

3

Introduction

rectly via neural networks is challenging. The recent neural implicit
representations define shapes implicitly as the level set of a contin-
uous function, parameterized with neural networks [29, 144, 166].
They can model dense surfaces in arbitrary topologies, but often fall
short when reconstructing comparably simple objects. Our aim is
to advance the neural implicit representations, enabling them to en-
code complex geometries across diverse topologies and scale to large
scenes.

Research Question 2: Can we find a representation that is inter-
pretable, lightweight, and facilitates rapid inference?

As mentioned before, neural implicit representations gained popu-
larity due to their expressiveness and flexibility. However, their re-
liance on heavy neural networks for encoding surface details often
results in slow surface extraction as they require numerous network
evaluations in 3D space. This significantly limits its feasibility for
applications demanding fast inference. On the other hand, explicit
representations like point clouds, require only a few parameters to
represent the geometry, and it is very fast to predict. Therefore, our
target is to benefit the best from both worlds, leading to a lightweight
representation that ensures high-quality reconstruction at low infer-
ence times.

Research Question 3: How can neural implicit representations be
employed for dense SLAM in large scenes?

While our first two research questions explore optimal shape rep-
resentations for 3D reconstruction from input point clouds, A more
realistic scenario for 3D reconstruction is to densely model a scene
solely from an unposed RGB(-D) sequence. This falls into the cate-
gory of dense visual SLAM. Traditional dense visual SLAM systems
are often unable to estimate plausible geometry for unobserved re-
gions. Although recent SLAM approaches using neural implicit rep-
resentations attain a certain level of predictive power, they are typi-
cally confined to smaller scenes due to their reliance on suboptimal
neural scene representations. We want to circumvent this limitation

4

1.3 Contributions

by introducing a novel hybrid representation, enabling the neural-
implicit-based SLAM system for large-scale scenes.

Research Question 4: How to generate a unified neural representa-
tion for a broad set of 3D scene understanding tasks without any 3D
supervision?

Upon addressing the first three research questions, we can assume
having obtained the 3D geometry of a scene. One natural down-
stream application is the understanding of this reconstructed scene.
Previous learning-based methods usually handle one single 3D scene
understanding task at a time, in a fully-supervised learning manner.
Our aspiration instead is to develop a zero-shot method, producing
a neural scene representation capable of inferring 3D semantics, af-
fordances, physical properties, and beyond.

1.3 Contributions

This thesis addresses the research questions outlined earlier and con-
tributes to the instigation of learning neural scene representations for
3D reconstruction as well as 3D scene understanding. Specific con-
tributions are detailed as follows.

1.3.1 3D Reconstruction with Scalable Neural
Representations

Neural implicit representations have emerged as a popular choice
for learning-based 3D reconstruction since they can capture 3D
shapes in a continuous, resolution-independent, and topologi-
cally flexible manner. However, most implicit-based approaches
struggle with complex geometries and larger scenes. This lim-
itation often stems from their simple fully-connected network
architecture which does not allow for integrating local informa-
tion in the observations or incorporating inductive biases such

5

Introduction

as translational equivariance. To address this, we propose Con-
volutional Occupancy Networks, a novel flexible implicit represen-
tation for detailed reconstruction of objects and 3D scenes. Our
model incorporates inductive biases by combining convolutional

Scene Reconstructions

encoders with implicit
occupancy decoders,
enabling structured
reasoning in 3D space.
Our evaluations show
that our method en-
ables fine-grained im-
plicit 3D reconstruc-
tion of single objects,
scales to large indoor
scenes, and general-
izes well from syn-
thetic to real data.

1.3.2 3D Reconstruction with a Differentiable
Poisson Solver

While our scalable neu-
ral implicit representa-
tions show promising
results in detailed re-
construction, the infer-

ence process remains time-consuming due to the numerous network
evaluations for extracting surfaces. To address this problem, we re-
visit the classic yet ubiquitous point cloud representation and intro-
duce a differentiable point-to-mesh layer using a differentiable for-
mulation of Poisson Surface Reconstruction (PSR), which allows for
a GPU-accelerated fast solution of the indicator function given an
oriented point cloud. The differentiable PSR layer bridges the ex-
plicit 3D point representation with the 3D mesh via the implicit indi-
cator field, enabling end-to-end optimization. This duality between

6

1.3 Contributions

points and meshes hence allows us to represent shapes as oriented
point clouds, which are explicit, lightweight, and expressive. Our
Shape-As-Points (SAP) model is interpretable, lightweight, and accel-
erates inference time by one order of magnitude compared to neural
implicit representations, but could still produce topology-agnostic,
high-fidelity watertight surfaces.

1.3.3 SLAM with Scalable Neural Representations

While our earlier con-
tributions focused on
3D reconstruction from
point clouds, a more
practical setting for
3D reconstruction is to
reconstruct 3D dense
scene geometry given
only some unposed
RGB(-D) sequences
with a hand-held cam-
era, i.e. dense visual
SLAM. To this end, we present NICE-SLAM, a dense SLAM system
that employs a hierarchical neural implicit representation. Optimiz-
ing this representation with pre-trained geometric priors enables
detailed reconstruction on large indoor scenes, outperforming re-
cent neural implicit SLAM systems in scalability, efficiency, and
robustness.

1.3.4 3D Scene Understanding with Large Vision
Language Models

Once we obtain the realistic 3D reconstruction of a scene, the aim
for the last part of this thesis is high-level perception tasks, such as

7

Introduction

Zero-shot Semantic Segmentation
“anything soft” - Property “where to sit” - Affordance

“kitchen” – Room Type“made of metal” - MaterialInput 3D Point Cloud

Zero-shot Semantic Segmentation

3D scene understanding. Traditional 3D scene understanding ap-
proaches have largely depended on supervision from benchmark
datasets tailored for specific tasks, such as 3D semantic segmenta-
tion, often confined to a closed set of classes. Such specialized mod-
els, while adept in their designated task, are impractical for many
real-world applications as the models lack the flexibility to continu-
ously adapt to new concepts/classes in the scene.

Addressing this challenge, recent advancements, including our work
OpenScene discussed in Chapter 6 emphasize open-vocabulary 3D
scene understanding. This approach allows segmentation and un-
derstanding of arbitrary concepts, independent of any fixed closed
set of classes. Specifically, given an arbitrary query like a text de-
scription or an image of an object, the goal is to segment those parts
in the 3D scene that are described by the query. For example, within
a reconstructed house as shown above, we are interested in under-
standing which surfaces are part of “a bed” (semantics), “made of

metal” (materials), “kitchen” (room types), “where to sit”, and
which surfaces are “soft” (physical property). Such capabilities not
only offer a richer understanding but are also pivotal for applications
such as facilitating robot navigation in unfamiliar settings or enhanc-

8

1.4 Outline

ing AR/VR experiences in complicated indoor scenarios, especially
when specific annotated labels are sparse.

1.4 Outline

This thesis is divided into 7 chapters.

Chapter 2 provides a background review of research related to this
thesis.

Chapter 3 introduces our exploration into scalable neural implicit
representations and their application in detailed 3D reconstruction.
This chapter is based on our publication at ECCV 2020 [171].

Chapter 4 presents a differentiable Poisson solver that enables rep-
resenting shapes as lightweight point clouds and speeds up the re-
construction process. This chapter is based on our paper presented
at NeurIPS 2021 [170].

Chapter 5 explores a hierarchical neural scene representation for
dense RGB-D SLAM in large scenes. This chapter is based on our
showcased at CVPR 2022 [281].

Chapter 6 presents a zero-shot method for a range of novel 3D scene
understanding tasks with open vocabularies. The content of this
chapter is rooted in our publication at CVPR 2023 [169].

Chapter 7 concludes the thesis by summarizing its contributions.
This chapter also reflects on the nature and potential role of learning
neural scene representations, and provides a discussion of promising
future directions.

9

Introduction

1.5 Publications

This thesis includes the following 4 publications [169–171, 281].

Convolutional Occupancy Networks
Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys,
Andreas Geiger
European Conference on Computer Vision (ECCV) 2020 (Spotlight)

Shape As Points: A Differentiable Poisson Solver
Songyou Peng, Chiyu ”Max” Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, Andreas Geiger
Advances in Neural Information Processing Systems (NeurIPS), 2021
(Oral)

NICE-SLAM: Neural Implicit Scalable Encoding for SLAM
Zihan Zhu*, Songyou Peng*, Viktor Larsson, Weiwei Xu, Hujun Bao,
Zhaopeng Cui, Martin R. Oswald, Marc Pollefeys
Conference on Computer Vision and Pattern Recognition (CVPR), 2022

OpenScene: 3D Scene Understanding with Open Vocabularies
Songyou Peng, Kyle Genova, Chiyu ”Max” Jiang, Andrea Tagliasac-
chi, Marc Pollefeys, Thomas Funkhouser
Conference on Computer Vision and Pattern Recognition (CVPR), 2023

13 papers that I contributed to during PhD but are not included in
this thesis, 8 published papers [16,125,127,130,165,177,260,280] and
5 papers in submission:

NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM
Zihan Zhu*, Songyou Peng*, Viktor Larsson, Zhaopeng Cui, Martin
R. Oswald, Andreas Geiger, Marc Pollefeys
International Conference on 3D Vision (3DV), 2024 (Oral)

10

1.5 Publications

FastHuman: Reconstructing High-Quality Clothed Human in
Minutes
Lixiang Lin, Songyou Peng, Qijun Gan, Jianke Zhu
International Conference on 3D Vision (3DV), 2024

DiffDreamer: Towards Consistent Unsupervised Single-view
Scene Extrapolation with Conditional Diffusion Models
Shengqu Cai, Eric R. Chan, Songyou Peng, Mohamad Shahbazi,
Anton Obukhov, Luc Van Gool, Gordon Wetzstein
International Conference on Computer Vision (ICCV), 2023

MonoSDF: Exploring Monocular Geometric Cues for Neural Im-
plicit Surface Reconstruction
Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, An-
dreas Geiger
Advances in Neural Information Processing Systems (NeurIPS), 2022

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields
for Multi-View Reconstruction
Michael Oechsle, Songyou Peng, Andreas Geiger
International Conference on Computer Vision (ICCV), 2021 (Oral)

KiloNeRF: Speeding up Neural Radiance Fields with Thousands
of Tiny MLPs
Christian Reiser, Songyou Peng, Yiyi Liao, Andreas Geiger
International Conference on Computer Vision (ICCV), 2021

Dynamic Plane Convolutional Occupancy Networks
Stefan Lionar*, Daniil Emtsev*, Dusan Svilarkovic*, Songyou Peng
Winter Conference on Applications of Computer Vision (WACV), 2021

DIST: Rendering Deep Implicit Signed Distance Function with
Differentiable Sphere Tracing
Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Polle-
feys, Zhaopeng Cui
Conference on Computer Vision and Pattern Recognition (CVPR), 2020

11

Introduction

NeRF On-the-go: Exploiting Uncertainty for Distractor-free NeRFs
in the Wild
Weining Ren*, Zihan Zhu*, Boyang Sun, Jiaqi Chen, Marc Pollefeys,
Songyou Peng
In Submission

3D Neural Edge Reconstruction
Lei Li, Songyou Peng, Zehao Yu, Shaohui Liu, Rémi Pautrat, Xi-
aochuan Yin, Marc Pollefeys
In Submission

RENOVATE: Renaming Classes for Open-Vocabulary Segmenta-
tion
Haiwen Huang, Songyou Peng, Dan Zhang, Andreas Geiger
In Submission

Segment3D: Learning Fine-Grained Class-Agnostic 3D Segmenta-
tion without Manual Labels
Rui Huang, Songyou Peng, Ayça Takmaz, Federico Tombari, Marc
Pollefeys, Shiji Song, Gao Huang, Francis Engelmann
In Submission

Ternary-type Opacity and Hybrid Odometry for RGB-only NeRF-
SLAM
Junru Lin, Asen Nachkov, Songyou Peng, Luc Van Gool, Danda Pani
Paudel
In Submission

12

C H A P T E R 2
Background

In this chapter, we provide a background overview of the research
fields related to this thesis. We first provide an overview of the de-
velopment in 3D shape representations in Sec. 2.1. We then discuss
in Sec. 2.2 and Sec. 2.3 the development of 3D reconstruction from
point clouds and multi-view images. Finally, we provide a com-
prehensive review of the topic of 3D scene understanding, or more
specifically, 3D semantic segmentation in Sec. 2.4.

2.1 3D Shape Representations

In this section, we explore the predominant 3D shape representa-
tions employed in learning-based 3D reconstruction. Specifically,
the focus lies on four main representations: voxel grids, polygon
meshes, point clouds, and neural implicit representations. While

13

Background

(a) Voxel Grids (b) Point Clouds (c) Mesh (d) Implicits

Figure 2.1: Comparison on 3D Shape Representation. Image taken from [144].

many other representations exist [27], this discussion will concen-
trate exclusively on the aforementioned four (see Fig. 2.1).

2.1.1 Voxel Grids

Voxel grids are an extension of the pixel-based image representation
into the 3D domain. Just as an image uses a grid structure to store
RGB color values, voxel representations use a three-dimensional grid
to store binary values, like occupancy, or scalar values, such as
signed distance functions (SDFs), to implicitly define 3D structures.
Neural networks can easily predict a grid of voxels with implicit field
values, which can subsequently be processed using meshing or iso-
surfacing algorithms to extract the mesh.

The simplest way to generate voxels is to use a 3D CNN network
to predict a 3D grid. Some works [40, 240, 241, 272] use an encoder-
decoder structure where a 2D CNN encoder encodes the input image
into a latent code, and a 3D CNN decoder decodes the latent code
into a voxel grid. This concept was later extended to reconstructing

14

2.1 3D Shape Representations

3D geometry from multiple input images, as showcased by [86, 96,
167].

However, a limitation arises when we consider the space complexity
of voxel grids, which is of O(N3). Given hardware memory limita-
tions, generating a voxel grid with a sufficiently high resolution be-
comes challenging. To address this, many have turned to the octree
representation, a technique that adaptively subdivides voxels. This
representation has been applied in many works, such as HSP (Hi-
erarchical Surface Prediction) [70], OctNetFusion [179], OGN [209],
and Dual OCNN [226]. While octrees offer a flexible structure that
can allocate varying capacities across the 3D space, implicit field val-
ues are still stored in grids. As a consequence, the resolution of the
represented geometry remains bounded by the chosen grid resolu-
tion and maximum depth.

2.1.2 Point Clouds

A point cloud comprises a set of individual points in 3D space, each
representing a segment of an object’s surface. While each point is pri-
marily identified by its 3D coordinates, some might carry additional
attributes, such as color. Their ability to represent any shape lends
point clouds a significant degree of versatility. However, their in-
herently unstructured and unordered format posed challenges in the
realm of neural networks, primarily as conventional convolutional
neural networks were tailored for structured data.

Qi et al. [172] pioneered point clouds as a representation of dis-
criminative deep learning tasks. They attain permutation invari-
ance by individually applying a fully connected neural network
to each point, subsequently paired with a global pooling opera-
tion. This pioneering method became a foundation upon which
numerous enhancements emerged, such as enhancing the convo-
lution operation [4, 117, 242, 250] or integrating hierarchical struc-
tures [173,229,274]. In the domain of 3D reconstruction from images,

15

Background

Fan et al. [52] take in images and use a neural network to output 3D
point clouds.

While point clouds bypass the need for careful topology design, this
absence of inherent connectivity poses limitations. Specifically, with-
out details on point relationships or connections, point clouds fall
short in certain graphic applications like rendering and collision de-
tection, where such relationships are crucial.

2.1.3 Polygon Meshes

Meshes serve as another 3D shape representation. Essentially, they
represent the surface of a 3D object through a collection of intercon-
nected geometric shapes, predominantly triangles or quadrilaterals,
termed polygons. These polygons are defined by vertices that repre-
sent distinct points in 3D space, connected by edges. The collection
of polygons forms the mesh that describes the 3D object’s surface.
Meshes extend the point cloud representation with connectivity in-
formation, facilitating geodesic path information traversal.

In the expanding horizon of learning-based 3D reconstruction tech-
niques, meshes have been considered as the output representation.
Such methods essentially directly regress the vertices and faces of a
mesh. One pioneer work was Deep Marching Cubes (DMC) [121].
DMC has an encoder-decoder structure, where the encoder converts
inputs into latent codes, while the decoder, a 3D CNN, generates
grids of inside-outside signs and vertex positions. An explicit tri-
angle mesh can be extracted by applying the Marching Cubes al-
gorithm, and the positions of the mesh vertices are given by the
predicted grid of vertex positions. While this initiative sparked
a series of work with similar ideas [28, 30, 62, 65, 95, 124, 224, 232],
most of these approaches often yield self-intersecting meshes. More-
over, they are either only able to generate meshes with simple topol-
ogy [28, 30, 62, 65, 224], demand reference templates from similar ob-
ject class [95, 108], or cannot guarantee closed surfaces [62, 65].

16

2.1 3D Shape Representations

Undoubtedly, mesh-based representations find resonance in diverse
applications. Yet, their inherent need for 3D space discretization,
combined with the challenges they pose for neural network predic-
tions, can restrict topology and harm generalizability.

2.1.4 Neural Implicit Representations

Neural implicit representations, now widely known as neural
fields [245], have been rapidly making a mark in areas such as
3D reconstruction, novel view synthesis, and generative modeling.
This burgeoning interest can be traced back to three pivotal works
unveiled at CVPR 2019: Occupancy Networks [144], DeepSDF [166],
and IM-Net [29].

At its core, a neural implicit representation is an intricate multi-layer
perceptron (MLP) designed to take a point’s coordinate as input and
output its corresponding inside-outside sign (occupancy) [29,144] or
signed distance [166]. The MLP itself hence implicitly represents a
3D shape. To generate different output shapes based on input, the
MLP is tailored using various conditioning techniques, such as con-
catenating a latent shape code with the input point coordinates be-
fore feeding to the MLP, or modulating MLP weights via a hyper-
network [195]. Soon after, to capture detailed shape geometries and
generalize better, methods have been proposed to replace global la-
tent codes with local ones for conditioning the MLP. PIFu [185], PI-
FuHD [186], DISN [248] employ pixel-aligned local features from 2D
image encoders for 3D reconstruction from images. On the other
hand, our works ConvONet [171] and DPConvONet [127] among
others like LIG [90] and IF-Nets [36] use local features extracted
from point cloud or voxels to perform object or large-scale scene
reconstruction. With the recent strides in differentiable renderers
for neural implicit representations, these representations can be ef-
fectively learned with only 2D observations. Noteworthy methods
like DIST [130], DVR [161] and IDR [256] can reconstruct objects

17

Background

from images but they assume given object masks. UNISURF [165],
NeuS [225], and VolSDF [255] further relax the need of object mask.

Neural implicit representations differ from other aforementioned
representations due to their continuous nature, thus they can po-
tentially represent geometries at infinite resolution, and naturally
handle complicated shape topologies. Another highlight is its com-
pact memory footprint compared to voxel-based solutions, since the
memory requirements for MLP-based representations scale only ac-
cording to the number of network parameters and are in general
much lower. Yet, a significant downside remains in its inherently
slow inference time. To output the entire shape, a grid of points
needs to be sampled in space and the MLP needs to evaluate ev-
ery point to produce a grid of implicit field values. To speed up the
process, in Chapter 4 we propose a method that efficiently solves the
Poisson Equation during inference.

Given the rapid evolution of this field, we touch only on some rep-
resentative works. For a more comprehensive overview, we recom-
mend the survey paper [245].

2.2 3D Reconstruction from Point Clouds

Reconstructing 3D shapes from point clouds is a pivotal task in com-
puter vision and graphics. This section reviews methods that un-
dertake this task, considering point clouds both with and without
point normals Note that, state-of-the-art reconstruction accuracy is
predominantly achieved using implicit representations. Hence, our
discussion will be centered on works along this line.

Broadly speaking, the methods can be categorized into optimization-
based and learning-based approaches. While optimization-based
techniques excel in capturing geometric details, they often suffer
from extended optimization times and sensitivity to input point
cloud noise. Conversely, learning-based methods, trained on large
datasets, showcase resilience to varied input noise and boast faster

18

2.2 3D Reconstruction from Point Clouds

reconstruction speeds. However, they occasionally compromise on
the granularity of the final reconstruction.

2.2.1 Optimization-Based Approaches

PSR-Based Approaches. The groundbreaking Poisson Surface Re-
construction (PSR) [98] formulates surface reconstruction as solving
a Poisson problem. The Poisson problem admits a hierarchy of lo-
cally supported functions, and therefore its solution reduces to a
well-conditioned sparse linear system. The solution to the problem is
global since they consider all points simutaneously, eliminating the
need for heuristic partitioning or blending. Its resilience to data noise
and enabling high-detail reconstruction make it a favored choice for
surface reconstruction from point clouds. Enhancing the original
PSR, Screened Poisson Surface Reconstruction (SPSR) [97] explicitly
incorporate the points as interpolation constraints, and introduces
algorithmic improvements that reduce the time complexity of the
solver to linear in the number of points. Sellán and Jacobson [191]
also introduce a statistical extension of PSR. Instead of directly out-
putting an implicit function, they represent the reconstructed shape
through a modified Gaussian Process, facilitating statistical queries.

However, a common limitation among these methods is their re-
liance on accurate point normals. Inaccuracies can drastically de-
grade performance. Addressing this, iPSR [75] iteratively refines
normals using PSR. They take as input point samples with normals
directly computed from the surface obtained in the preceding itera-
tion, and then generate a new surface with better quality. Our work,
Shape-As-Points (Chapter 4), introduces a differentiable PSR variant,
which not only reduces the dependency on point normals, but also
allows for a GPU-accelerated fast solution of Poisson equation.

Neural Implicit-Based Approaches. Diverging from traditional
methods, neural implicit-based techniques optimize an MLP using

19

Background

point clouds, with or without normals. SAL [2] proposes an un-
signed similarity function and a geometric network initialization
to learn a neural unsigned distance field from dense point clouds.
SALD [3] enhances SAL by incorporating derivatives in the regres-
sion loss. This leads to a lower sample complexity, and consequently
better fitting. IGR [64] presents different optimization objectives that
encourage the neural network to vanish on the input point cloud
and to have a unit norm gradient. SIREN [195] improves the repre-
sentation capability of MLPs by using periodic activation in MLPs,
so it can quickly overfit a neural implicit from point clouds. Neu-
ral Splines [237] employs a kernel method to obtain implicit field
from a set of points and their normals, based on kernels arising from
infinitely wide shallow ReLU networks. Note that, although many
of these methods [2, 3, 64, 195] support reconstruction from unori-
ented point clouds, we notice that optimal performance is typically
achieved when point normals are available.

2.2.2 Learning-Based Approaches

While optimization-based techniques excel in capturing geometric
nuances, their prolonged optimization process and sensitivity to
noise can be limiting. In contrast, learning-based methods, trained
on extensive datasets, offer robustness against varied noise levels
and efficient reconstructions through straightforward feedforward
passes.

Note that a significant amount of learning-based approaches use a
global shape latent code to encode the shape from point clouds [59,
65,89,144,166]. However, as highlighted in Sec. 2.1, such global codes
often fall short of representing detailed shape geometries. Thus, our
focus will be on works that consider local features.

ConvONet [171] (Chapter 3) and IF-Nets [36] previously discussed
in Sec. 2.1, stand out for their ability to reconstruct shapes from point
clouds without normals. Our ConvONet [171] and its most direct
follow-up works [127, 208] encode the input point clouds to either

20

2.2 3D Reconstruction from Point Clouds

2D feature planes or 3D grids, which are later processed by CNNs
for further feature aggregation. They condition the occupancy pre-
diction network with the local features extracted from the feature
planes/grids. They show for the first time large-scale scene recon-
struction with neural implicit representations. IF-Nets [36], while
conceptually similar, adopts CNNs to process multi-scale 3D feature
grids. GIFS [258] does not predict the inside/outside status of each
query point, but rather predicts whether two points are separated
by any surface. This modification enables them to represent non-
watertight shapes, but also requires a modified Marching Cubes al-
gorithm.

Points2Surf [51] is purely based on point cloud encoders without any
CNN. For a query point in space, it adopts a PointNet [172] to encode
points sampled at the neighborhood of the query point into a local
feature code, and another PointNet to encode the points sampled at
the entire input point cloud into a global feature code. These features
are then used by the decoder to predict the signed distance of a query
point. POCO [11], on the other hand, leverages point cloud convolu-
tions to compute latent vectors at each input point. For query points,
it performs a learning-based interpolation on nearest neighbors in
input points to retrieve a weighted-averaged feature vector, and the
feature vector is processed by an MLP to predict the occupancy.

Hybrid Approaches. There are also methods that attempt to com-
bine the learning-based pipeline with online optimization. LIG [90]
and DeepLS [20] leverage the shape priors learned from local
patches. They first train an autoencoder to learn the latent code of
local crops of 3D shapes. During inference, the MLP decoder is fixed,
and they divide the space into a grid of overlapping cubes and opti-
mize to obtain a latent code for each patch of the input point cloud.
However, their reliance on point normals and the time-intensive re-
construction process can be limiting. SAIL-S3 [273] while conceptu-
ally similar, achieves reconstruction without the need for normals,
by adopting Sign Agnostic Learning [2].

NKF [235], an extension of Neural Spline [237] mentioned before,

21

Background

instead of using the fixed point properties (normals), introduces a
kernel ridge regression that fits the input points on-the-fly by solv-
ing a simple positive definite linear system using the learned kernel.
NKSR [81] builds upon NKF and develops a new gradient-based ker-
nel formulation, ensuring robustness to noise. Moreover, it uses an
explicit voxel hierarchy structure and compactly supported kernels
to be capable of handling large inputs while still producing high-
fidelity outputs. However, NKF and NKSR still require point nor-
mals as input. Deep IMLS [132] processes sparse, unoriented point
clouds as its input. Utilizing a U-Net-inspired autoencoder, it pre-
dicts an octree structure. Within this structure, each octree node en-
compasses a set number of predicted points, each accompanied by
normals. These predicted points, equipped with their normals, serve
as the foundation for constructing an implicit field using the implicit
moving least-squares (IMLS) surface formulation [107].

Worth mentioning that for our proposed SAP [170] (Chapter 4), be-
sides the optimzation-based setting discussed in Sec. 2.2.1, we also
incorporate a differentiable Poisson solver within the learning-based
framework. Given a noisy, unoriented point cloud, our model is
trained to predict a refined, oriented point cloud. This enhanced
point cloud then facilitates the derivation of a watertight mesh,
achieved by solving the Poisson equation using the differentiable
solver.

2.3 3D Reconstruction from Multi-view Images

Going from reconstructing shapes from point clouds, our focus now
shifts to the reconstruction of objects and scenes using posed multi-
view images. It is important to note that only a select few meth-
ods [56,63,151,239,265] employ explicit mesh representations for this
task. Consequently, our discussion will center on works that utilize
implicit representations, similar to Sec. 2.2.

In this domain, A limited number of studies have adopted a learning-

22

2.3 3D Reconstruction from Multi-view Images

based approach, where they learn priors from a set of training
shapes. These methods have various techniques for aggregating
data. 3D-R2N2 [40] uses recurrent neural networks to combine
global shape latent codes from multiple input images, Pix2Vox [244]
aggregates spatial features decoded from global shape latent codes,
Pixel2Mesh++ [232] directly aggregates image features from multi-
ple input images, while EVolT [221] aggregates image features from
multiple inputs together with 3D embeddings of spatial locations us-
ing a Transformer.

However, a majority of the methods tend to overfit or optimize a
single shape or scene based on multiple input images. This opti-
mization often leverages methods rooted in differentiable rendering
algorithms on implicit representations, or alternatively, are based on
the volume rendering formula as presented in NeRF [148].

2.3.1 Approaches with Surface Rendering

Methods discussed in this section utilize a differentiable surface ren-
dering formula for implicit representations. They operate under the
assumption that an object segmentation mask is provided for each
input image and that each ray intersects the surface only once, allow-
ing for a single intersection point per ray for gradient propagation.

Pioneering this approach, SDFDiff [91], DIST [130], DVR [161], and
IDR [256] introduced unique formulations of differentiable render-
ing on implicit surfaces. Specifically, SDFDiff [91] employs a regular
grid SDF, while others opt for neural implicit representations. When
it comes to color modeling, SDFDiff assumes the absence of textures
in the target shape and does not predict textures for the reconstructed
shape. Both DIST and DVR integrate Texture fields [164], leveraging
an MLP to predict the RGB color for each surface point. However,
this method falls short in modeling view-dependent effects. IDR em-
ploys an MLP to approximate the bidirectional reflectance distribu-
tion function (BRDF) for each surface point.

23

Background

Neural Lumigraph Rendering (NLR) [99] demonstrates that the ex-
tracted mesh, when combined with unstructured lumigraph render-
ing [13], can facilitate real-time rendering. MVSDF [267] capital-
izes on stereo matching and feature consistency to refine the neural
implicit SDF representation. RegSDF [266] harnesses reconstructed
point clouds from input images to guide and regularize neural field
learning. Finally, the Reparameterization SDF renderer [6] offers a
technique to compute accurate gradients concerning network pa-
rameters in neural SDF renderers.

2.3.2 Approaches with Volume Rendering

Following the introduction of NeRF [148], numerous methods have
embraced the NeRF-style volume rendering for multi-view recon-
struction. Central to these methods is the principle that each point
sampled along a ray possesses both density (termed ”opacity”) and
radiance (or ”view-dependent RGB color”). Predicted by an MLP,
the final pixel color is derived from the accumulated radiance of all
sampled points wrt. their density, similar to alpha-compositing. This
approach has enhanced both the applicability and scalability of these
methods since it eliminates the need for object masks.

The pioneer works in this domain are UNISURF [165], NeuS [225],
and VolSDF [255], each introducing unique formulations of volume
rendering on implicit surfaces. For instance, instead of learning the
density, UNISURF learn an occupancy field, and then re-formulate
the volume rendering process accordingly. In contrast, both NeuS
and VolSDF model density by adapting the learnable SDF field.

UNISURF [165], NeuS [225], and VolSDF [255] are pioneers that pro-
pose different formulations of volume rendering on implicit surfaces.
Specifically, instead of outputting density, UNISURF learns to out-
put an occupancy field, and re-formulate the volume rendering pro-
cess. NeuS and VolSDF instead model the density by transforming
the learnable SDF field.

24

2.3 3D Reconstruction from Multi-view Images

Building upon these foundational works, subsequent research has
introduced various enhancements. Azinovic et al. [5] introduces
depth supervision into the optimization process. NeuralWarp [47]
emphasizes photo-consistency across different views during opti-
mization, ensuring the accuracy of the implicit geometry. Manhat-
tanSDF [67] integrates planar constraints, refining the geometry in
areas like floors and walls. Geo-Neus [55] optimizes multi-view ge-
ometry by harnessing sparse geometry from structure-from-motion
and photometric consistency in multi-view stereo. SparseNeuS [135]
focuses on 3D reconstruction from sparse images, introducing ge-
ometry encoding volumes for universal surface prediction. HF-
NeuS [227] adopts a decomposition approach for the SDF, using
a coarse-to-fine strategy to amplify high-frequency details. Sun et
al. [202] extend the principles of NeuS and NeRF-W [141] to recon-
struct scenes from diverse Internet photo collections, accommodat-
ing varying illumination. MonoSDF [260] leverages depth and nor-
mal maps predicted by pretrained monocular estimator networks for
2D images, to enhance reconstruction quality and reduce optimiza-
tion time.

All methods outlined in Sec. 2.3.1 and Sec. 2.3.2 operate under the
assumption that camera poses are provided. This assumption is cru-
cial as accurate camera poses can significantly influence the quality
of the reconstruction. However, in real-world scenarios, this require-
ment might not always be met due to inaccuracies in camera estima-
tion. Furthermore, while these methods have demonstrated impres-
sive reconstruction results, they come with the caveat of extensive
offline optimization time, often spanning hours. Such a long train-
ing phase can hinder their real-time applicability in practical scenar-
ios. As a result, there’s a growing emphasis on advancing this do-
main towards online 3D reconstruction, where both reconstruction
and tracking occur simultaneously.

SLAM, especially those based on neural-implicit approaches, offer
promising solutions in this direction. We will delve deeper into the
intricacies and advancements of neural-implicit based online SLAM
methods in Chapter 5.

25

Background

2.4 3D Scene Understanding

With a reconstructed 3D scene in hand, gaining a comprehensive
understanding of its varied properties becomes crucial. Traditional
methods for 3D scene understanding have predominantly relied on
benchmark datasets, often designed for specific tasks like 3D seman-
tic segmentation for a close-set of 20 classes. While these models
excel in their specific domains, their narrow scope restricts their util-
ity in dynamic real-world scenarios where adaptability to evolving
scene elements is imperative.

Addressing this limitation, the forefront of research is now pivoting
towards open-vocabulary 3D scene understanding. This progressive
approach facilitates segmentation and comprehension of a myriad of
concepts, decoupled from any fixed class set. For instance, within a
reconstructed house, this method could discern aspects ranging from
chair-associated surfaces to metal materials, encompassing diverse
queries from room types to tactile properties. This can enable a wide
range of new applications, especially when there are no specific an-
notated labels.

In this section, we will begin by shedding light on the 2D vision-
language foundation models in Sec. 2.4.1, and subsequently delve
into the latest advances in open-vocabulary 3D scene understanding
in Sec. 2.4.2.

2.4.1 Vision-Language Foundation Models

The emergence of open-vocabulary scene understanding in both
2D and 3D domains can be attributed to the advancements in
vision-language foundation models. Notable models in this
category include CLIP [175], OpenCLIP [35], ALIGN [87], and
Flamingo [1]. CLIP (Contrastive Language-Image Pre-Training),
for instance, is representative of this shift. Trained on vast col-

26

2.4 3D Scene Understanding

lections of Internet-derived image-caption pairs, CLIP employs
an image encoder and a text encoder, as shown in Fig. 2.2.

I1·T2 I1·T3 …

I2·T1 I2·T3 …

I3·T1 I3·T2 …

⋮ ⋮ ⋮

I1·T1

I2·T2

I3·T3

(1) Contrastive pre-training

Image
Encoder

Text
EncoderPepper	the

aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

T1 T2 T3 …

I1

I2

I3

⋮

(2) Create dataset classifier from label text

plane

car

dog

⋮

bird

A	photo	of
a	{object}.

⋮

Text
Encoder

T1 T2 T3 TN

…

(3) Use for zero-shot prediction

Image
Encoder

I1 I1·T2 I1·TNI1·T1

…

…

A	photo	of
	a	dog.

TN

IN·T1 IN·T2 IN·T3

I1·TN

I2·TN

I3·TN

⋮

…IN

…

⋮ ⋱

IN·TN

I1·T3

Figure 2.2: Overview of CLIP. The diagram is taken
from the original paper [175].

These encoders col-
laboratively map in-
puts into a shared
embedding space.
Through a con-
trastive training ap-
proach, correspond-
ing images and cap-
tions are aligned
in the embedding
space, while non-
related pairs are
strategically sepa-
rated. These models leverage large-scale pretraining, granting them
the capability for zero-shot transfer across diverse downstream
tasks, from object recognition and classification.

Building on the advancements of large-scale model pre-training,
there has been a surge of interest in foundational models focused
on images [61, 66, 110, 113, 119, 176, 246, 247, 276]. Diverging from the
traditional route of obtaining per-image global features as shown in
Fig. 2.3 (a), these works emphasize extracting versatile class-agnostic
features from images, illustrated in Fig. 2.3 (b) and (c). This shift
equips users with the ability to define arbitrary text labels for tasks
more than just classification, but also dense prediction tasks like de-
tection, or segmentation during test phases.

Delving deeper, LSeg [113] introduces a method where a visual en-
coder generates per-pixel embeddings from an input image. These
embeddings then align with the text representations of their specific
pixel class labels using 2D semantic segmentation datasets, as seen
in Fig. 2.3 (b). However, a significant hurdle arises: the pixel-wise
class annotations are resource-intensive. To alleviate this, alternative
approaches like OpenSeg [61], OVSeg [119], and ODISE [247] have
emerged. These methods first derive a collection of class-agnostic

27

Background

Average
pooling

B
ackbone

Im
age

B
ackbone

(a)A
LIG

N
/C

LIP

H
x
W

x
D

C
x
D

C
ategory
encoder P

er-pixelsegm
entation

loss

S
entence
encoder

A
big

stuffed
bear

sitting
on

a
bench

outside
a
store

Im
age-textcontrastive

loss

1
x
D

1
x
D

(b)P
er-pixelsegm

entation

B
ackbone

C
ross-

attention
m
odule

M
ask-based

pooling

R
egion-w

ord
grounding

loss

S
egm

entation
loss

(c)O
penS

eg
(ours)

W
ord

encoder

A
big

stuffed
bear

sitting
on

a
bench

outside
a
store

K
x
D

N
x
D

N
x
D

H
x
W

x
D

N
x
H
x
W

C
lass-agnostic
segm

entation
annotations

B
alloon,B

ear,
B
ench,B

us,
Frisbee,Tree

...

C
lass-specific

segm
entation

annotations

H
x
W

x
D

M
x
H
x
W

Figure
2.3:C

om
parison

ofD
ifferent

2D
Vision-Language

Foundation
M

odels.Im
age

taken
from

O
penSeg

[61].

28

2.4 3D Scene Understanding

segmentation masks and their associated features. They then align
each word in an image caption to one or multiple anticipated masks
using region-word grounding losses, as illustrated in Fig. 2.3 (c).
This strategy eliminates the need for costly pixel-wise class labels,
leveraging only weak labels. Such an approach is pivotal for scal-
ing up training data and expanding vocabulary sizes. Furthermore,
these methods harness the inherent generalization prowess of CLIP,
adeptly handling new classes that were absent during training.

2.4.2 Open-Vocabulary 3D Scene Understanding

The recent success of 2D open-vocabulary segmentation models [61,
113,119,247] highlighted in Sec. 2.4.1, has motivated the 3D scene un-
derstanding community to consider the setting of open vocabulary.

2D Lifting. A line of research investigates how to lift such 2D
open-vocabulary information to 3D. In Semantic Abstraction [68],
2D-based CLIP features are unprojected to 3D space via relevancy
maps, which are extracted from an input RGB-D stream. Though re-
sults look promising, they only address minor partial scenes and de-
pend on ground truth data for supervision. In ConceptFusion [85]
multi-modal 3D semantic representations are inferred from an in-
put RGB-D stream using 2D foundation models. They use point
clouds as the 3D representation. Similarly, approaches such as
DFF [105], LERF [100], VL-Fields [215], and 3D-OVS [129] harness
the NeRF [148] interpolation potential through volume-rendering of
CLIP embeddings. By Supervising these embeddings across training
views multi-view consistency is obtained. Once trained, they can
produce comprehensive 3D relevancy maps from a broad range of
language prompts interactively. However, all these methods rely on
2D images as a surrogate for understanding 3D scenes.

Text-to-3D Learning. Another line of work attempts to learn to
bridge text with 3D. In essence, post-training, these models enable

29

Background

querying of novel 3D spaces without the need for 2D imagery. Scan-
Net200 [182] pioneered this trajectory by utilizing the CLIP’s ver-
satility to segment directly from 3D point clouds. However, they
only pre-train 3D networks to text encoded anchors of the corre-
sponding semantic labels without a contrastive loss, but still fine-
tune with 3D GT annotations afterwards. Their focus is on using
the CLIP embedding to achieve better supervised 3D semantic seg-
mentation, rather than open-vocabulary queries. PLA [49] and its
follow-up work RegionPLC [253] build 3D-caption pairs and employ
contrastive learning to train the 3D model. However, they focus on
discovering unseen classes in indoor scenes. Similarly, CLIP2 [264]
collects a large dataset for text-image-3D labels, and performs cross-
modal contrastive pertaining, aiming to learn a 3D CLIP model fit
for recognition tasks. 3D-CLR [73] starts by aligning a per-scene
neural field of LSeg features with corresponding 3D point clouds.
Next, they train a relation network with a dataset captured in Habi-
tat simulator [140] for 3D multi-view visual Q&A. Lastly, OpenScene
(see Chapter 6) unprotects per-pixel 2D open-vocabulary features to
3D point clouds and uses them as a supervision signal to train a
3D CNN, thus facilitating numerous 3D scene understanding tasks
straight from 3D point clouds.

30

C H A P T E R 3
3D Reconstruction with
Scalable Neural
Representations

In this chapter, we delve into the challenges and potentials of neural
scene representations for large-scale 3D reconstruction in learning-
based systems. Although recent advances in neural implicit repre-
sentations have showcased promising outcomes in 3D reconstruc-
tion, their primary focus has been on the simpler geometry of sim-
ple objects. This limitation primarily stems from the inherent archi-
tecture of these representations—relying predominantly on simple
fully-connected networks—which consequently restricts the integra-
tion of local information into observations and the incorporation of
inductive biases, such as translational equivariance. To address these
constraints, this chapter presents an approach that combines convo-
lutional encoders with implicit occupancy decoders. This not only
facilitates structured reasoning in 3D space, but also promotes fine-

31

3D Reconstruction with Scalable Neural Representations

grained implicit 3D reconstruction from single objects to expansive
indoor scenes. Moreover, it also showcases robust adaptability from
synthetic to real data.

3.1 Introduction

3D reconstruction is a fundamental problem in computer vision with
numerous applications. An ideal representation of 3D geometry
should have the following properties: a) encode complex geometries
and arbitrary topologies, b) scale to large scenes, c) encapsulate local
and global information, and d) be tractable in terms of memory and
computation.

Unfortunately, current representations for 3D reconstruction do not
satisfy all of these requirements. Volumetric representations [142]
are limited in terms of resolution due to their large memory require-
ments. Point clouds [52] are lightweight but discard topological re-
lations. Mesh-based representations [65] are often hard to predict
using neural networks.

Recently, several works [29, 144, 146, 166] have introduced deep im-
plicit representations which represent 3D structures using learned
occupancy or signed distance functions. In contrast to explicit rep-
resentations, implicit methods do not discretize 3D space during
training, thus resulting in continuous representations of 3D geom-
etry without topology restrictions. While inspiring many follow-
up works [58, 59, 131, 133, 160, 162, 164, 197], all existing approaches
are limited to single objects and do not scale to larger scenes. The
key limiting factor of most implicit models is their simple fully-
connected network architecture [144, 166] which neither allows for
integrating local information in the observations, nor for incorporat-
ing inductive biases such as translation equivariance into the model.
This prevents these methods from performing structured reasoning as
they only act globally and result in overly smooth surface reconstruc-
tions.

32

3.1 Introduction

Occupancy
Probability

Fully-Connected
Network

Features

3D Location

(a) Occupancy Network [144]

Interpolation

3D Feature Volume

Occupancy
Probability

Fully-Connected
Network

Features

3D Location

(b) Conv. Occupancy Network

Scene Reconstructions

(c) Reconstruction on Matterport3D [23]

Figure 3.1: Convolutional Occupancy Networks. Traditional implicit models (a) are
limited in their expressiveness due to their fully-connected network structure. We propose
Convolutional Occupancy Networks (b) which exploit convolutions, resulting in scalable
and equivariant implicit representations. We query the convolutional features at 3D loca-
tions p ∈ R3 using linear interpolation. In contrast to Occupancy Networks (ONet) [144],
the proposed feature representation ψ(p, x) therefore depends on both the input x and the
3D location p. Fig. (c) shows a reconstruction of a two-floor building from a noisy point
cloud on the Matterport3D dataset [23].

In contrast, translation equivariant convolutional neural networks
(CNNs) have demonstrated great success across many 2D recogni-
tion tasks including object detection and image segmentation. More-
over, CNNs naturally encode information in a hierarchical manner in
different network layers [262, 269]. Exploiting these inductive biases
is expected to not only benefit 2D but also 3D tasks, e.g., reconstruct-
ing 3D shapes of multiple similar chairs located in the same room. In
this work, we seek to combine the complementary strengths of con-
volutional neural networks with those of implicit representations.

Towards this goal, we introduce Convolutional Occupancy Networks, a
novel representation for accurate large-scale 3D reconstruction with
continuous implicit representations (Fig. 3.1). We demonstrate that

33

3D Reconstruction with Scalable Neural Representations

this representation not only preserves fine geometric details, but also
enables the reconstruction of complex indoor scenes at scale. Our key
idea is to establish rich input features, incorporating inductive biases
and integrating local as well as global information. More specifically,
we exploit convolutional operations to obtain translation equivari-
ance and exploit the local self-similarity of 3D structures. We system-
atically investigate multiple design choices, ranging from canonical
planes to volumetric representations. Our contributions are summa-
rized as follows:

• We identify major limitations of current implicit 3D reconstruction
methods.

• We propose a flexible translation equivariant architecture which en-
ables accurate 3D reconstruction from object to scene level.

• We demonstrate that our model enables generalization from synthetic
to real scenes as well as to novel object categories and scenes.

3.2 Method

Our goal is to make implicit 3D representations more expressive.
An overview of our model is provided in Fig. 3.2. We first encode
the input x (e.g., a point cloud) into a 2D or 3D feature grid (left).
These features are processed using convolutional networks and de-
coded into occupancy probabilities via a fully-connected network.
We investigate planar representations (a+c+d), volumetric represen-
tations (b+e) as well as combinations thereof in our experiments.
In the following, we explain the encoder (Sec. 3.2.1), the decoder
(Sec. 3.2.2), the occupancy prediction (Sec. 3.2.3) and the training pro-
cedure (Sec. 3.2.4) in more detail.

34

3.2 Method

2D Feature Plane

PointNet
Encoder

Input

(a) Plane Encoder

PointNet
Encoder

3D Feature Volume

Input

(b) Volume Encoder

Occupancy
Probability

2D U-Net

Occupancy
Network

Features

3D Location

(c) Convolutional Single-Plane Decoder

Occupancy
Probability

2D U-Net

3D Location

2D U-Net

2D U-Net

Bilinear
Interpolation

2D Feature Planes

Occupancy
Network

Features

(d) Convolutional Multi-Plane Decoder

Occupancy
Probability

3D U-Net

Occupancy
Network

Features

3D LocationTrilinear
Interpolation

3D Feature Volume

(e) Convolutional Volume Decoder

Figure 3.2: Model Overview. The encoder (left) first converts the 3D input x (e.g., noisy
point clouds or coarse voxel grids) into features using task-specific neural networks. Next,
the features are projected onto one or multiple planes (Fig. 3.2a) or into a volume (Fig. 3.2b)
using average pooling. The convolutional decoder (right) processes the resulting feature
planes/volume using 2D/3D U-Nets to aggregate local and global information. For a query
point p ∈ R3, the point-wise feature vector ψ(x, p) is obtained via bilinear (Fig. 3.2c and
Fig. 3.2d) or trilinear (Fig. 3.2e) interpolation. Given feature vector ψ(x, p) at location p,
the occupancy probability is predicted using a fully-connected network fθ(p, ψ(p, x)).

3.2.1 Encoder

While our method is independent of the input representation, we
focus on 3D inputs to demonstrate the ability of our model in recov-

35

3D Reconstruction with Scalable Neural Representations

ering fine details and scaling to large scenes. More specifically, we
assume a noisy sparse point cloud (e.g., from structure-from-motion
or laser scans) or a coarse occupancy grid as input x.

We first process the input x with a task-specific neural network to ob-
tain a feature encoding for every point or voxel. We use a one-layer
3D CNN for voxelized inputs, and a shallow PointNet [172] with lo-
cal pooling for 3D point clouds. Given these features, we construct
planar and volumetric feature representations in order to encapsu-
late local neighborhood information as follows.

Plane Encoder. As illustrated in Fig. 3.2a, for each input point, we
perform an orthographic projection onto a canonical plane (i.e., a
plane aligned with the axes of the coordinate frame) which we dis-
cretize at a resolution of H×W pixel cells. For voxel inputs, we treat
the voxel center as a point and project it to the plane. We aggregate
features projecting onto the same pixel using average pooling, result-
ing in planar features with dimensionality H×W × d, where d is the
feature dimension.

In our experiments, we analyze two variants of our model: one vari-
ant where features are projected onto the ground plane, and one vari-
ant where features are projected to all three canonical planes. While
the former is computationally more efficient, the latter allows for re-
covering richer geometric structure in the z dimension.

Volume Encoder. While planar feature representations allow for en-
coding at large spatial resolution (1282 pixels and beyond), they are
restricted to two dimensions. Therefore, we also consider volumetric
encodings (see Fig. 3.2b) which better represent 3D information, but
are restricted to smaller resolutions (typically 323 voxels in our exper-
iments). Similar to the plane encoder, we perform average pooling,
but this time over all features falling into the same voxel cell, resulting
in a feature volume of dimensionality H ×W × D× d.

36

3.2 Method

3.2.2 Decoder

We endow our model with translation equivariance by processing
the feature planes and the feature volume from the encoder using 2D
and 3D convolutional hourglass (U-Net) networks [41,181] which are
composed of a series of down- and upsampling convolutions with
skip connections to integrate both local and global information. We
choose the depth of the U-Net such that the receptive field becomes
equal to the size of the respective feature plane or volume.

Our single-plane decoder (Fig. 3.2c) processes the ground plane fea-
tures with a 2D U-Net. The multi-plane decoder (Fig. 3.2d) processes
each feature plane separately using 2D U-Nets with shared weights.
Our volume decoder (Fig. 3.2e) uses a 3D U-Net. Since convolu-
tion operations are translational equivariant, our output features are
also translation equivariant, enabling structured reasoning. More-
over, convolutional operations are able to “inpaint” features while
preserving global information, enabling reconstruction from sparse
inputs.

3.2.3 Occupancy Prediction

Given the aggregated feature maps, our goal is to estimate the oc-
cupancy probability of any point p in 3D space. For the single-
plane decoder, we project each point p orthographically onto the
ground plane and query the feature value through bilinear interpola-
tion (Fig. 3.2c). For the multi-plane decoder (Fig. 3.2d), we aggregate
information from the 3 canonical planes by summing the features of
all 3 planes. For the volume decoder, we use trilinear interpolation
(Fig. 3.2e).

Denoting the feature vector for input x at point p as ψ(p, x), we pre-
dict the occupancy of p using a small fully-connected network:

fθ(p, ψ(p, x))→ [0, 1] (3.1)

37

3D Reconstruction with Scalable Neural Representations

The network comprises multiple ResNet blocks. We use the network
architecture of [162], adding ψ to the input features of every ResNet
block instead of the more memory intensive batch normalization op-
eration proposed in earlier works [144]. In contrast to [162], we use
a feature dimension of 32 for the hidden layers. Details about the
network architecture can be found in Sec. 3.2.5.

3.2.4 Training and Inference

At training time, we uniformly sample query points p ∈ R3 within
the volume of interest and predict their occupancy values. We apply
the binary cross-entropy loss between the predicted ôp and the true
occupancy values op:

L(ôp, op) = −[op · log(ôp) + (1− op) · log(1− ôp)] (3.2)

We implement all models in PyTorch [168] and use the Adam opti-
mizer [101] with a learning rate of 10−4. During inference, we apply
Multiresolution IsoSurface Extraction (MISE) [144] to extract meshes
given an input x. As our model is fully-convolutional, we are able to
reconstruct large scenes by applying it in a “sliding-window” fashion
at inference time. We exploit this property to obtain reconstructions
of entire apartments (see Fig. 3.1).

3.2.5 Network Architectures

Here we provide a detailed description of our network architectures.

Point Cloud Encoder. We first use a fully-connected layer followed
by a fully-connected ResNet [72] block to map the three-dimensional
input point coordinates into the feature space. Next, unlike Point-
Net [172] which pools over all points to acquire a global feature, we
perform the pooling operation locally. Depending on the defined
plane/volume feature maps, we perform max-pooling only over the

38

3.2 Method

features falling into the same pixel/voxel cell. The locally pooled
features are concatenated with the features before pooling, and then
fed into the next ResNet block. We use 5 of these ResNet blocks with
intermediate pooling to obtain the final point-wise features.

Voxel Encoder. Given an occupancy grid as input, we use a single 3D
convolutional layer with convolution kernel size 3× 3× 3 to extract
voxel-wise features with dimension of 32.

U-Net. We use a U-Net [41, 181] to process the plane or volume
features. We follow [181] and adapt a modified implementation
from [80] for our 2D variants. For our 3D variant, we adapt the 3D
U-Net [41] implementation from [238]. We set the input and output
feature dimensions to 32. Note that we choose the depth of the U-
Net such that the receptive field is equal or larger than the size of the
feature plane or volume. For example, when considering a 3D fea-
ture volume of 323 or a 2D feature plane of 1282, the depth is set to 3
or 5, respectively.

Occupancy Prediction Decoder. To predict the occupancy probabil-
ity of query points, we use the network of [162] comprising a stack
of fully-connected ResNet blocks. Table 3.5 provides an overview of
the number of ResNet blocks and hidden dimensions. For all experi-
ments, we use a hidden feature dimension of 32 and 5 ResNet blocks
for the occupancy prediction network.

Architecture Comparison with ONet [144]. For point cloud inputs,
ONet uses a PointNet [172] as point cloud encoder and 5 fully-
connected ResNet blocks as occupancy decoder. Both networks have
a hidden dimension of 512, resulting in 10.4 million parameters in to-
tal. In contrast, our method uses shallow variants for both networks
with a hidden dimension of 32: as discussed, we use a shallow lo-
cal PointNet and consider the less memory-intense conditioning in
the decoder from [161]. Combined, our shallow PointNet and our
decoder have 43k parameters. Our 2D/3D U-Net has roughly 1 mil-
lion parameters depending on the depth. Thus, our final model is

39

3D Reconstruction with Scalable Neural Representations

more memory-efficient than ONet. Moreover, we perform batch-
processing over instances as well as points. Hence, the decoder is
queried more often than the encoder. As we are able to use a shallow
decoder, this further reduces memory consumption in practice.

3.2.6 Implementation Details of Fully-Convolutional
Model

For very large scenes, such as vast mansions in Matterport3D with
numerous rooms, it is not realistic to reconstruct the entire place
with one forward pass due to the memory constraint. To address
this challenge, we need to modify our pipeline and fully exploit the
translation equivariant property of convolution networks. This al-
lows our method to scale to scenes with arbitrary size represented
in metric real-world units (i.e., in meters). Importantly, this fully-
convolutional model should not depend on a global coordinate sys-
tem, but only on relative local coordinates.

To train such a model capable of reconstructing very large-scale
scenes, we use our synthetic indoor scene dataset. A scene consists
of multiple objects from the ShapeNetCore [24] dataset, see Sec. 3.3
for details. While no real-world units are provided in this dataset, we
find that the synthetic scenes roughly correlate to a real-world unit
of 4.4m× 4.4m× 4.4m. The voxel size s is a hyperparameter of our
model and determines the granularity of the convolutional part. In
all experiments, we set s = 0.02m. Therefore, each scene is contained
in a regular grid of size 220× 220× 220 voxels.

For training the network, we predict the occupancy of query points
inside grid volumes cropped randomly within the scene. Specifically,
at each iteration, we randomly sample one point within the scene as
the center of the crop. The crop size for query points is H ×W ×
D, which is defined as 25× 25× 25 voxels in our experiments. To
effectively handle the boundary, we take a bigger input crop. Since
the receptive field of our network is r = 64, the corresponding input
crop has a size of (H + 63) × (W + 63) + (D + 63) = 88× 88× 88

40

3.3 Experiments

voxels. We use the point cloud encoder described in Sec. 3.2.5 to
encode the input point clouds inside each input crop. We use a batch
size of 2 crops in practice to fit in a single Nvidia RTX 2080-Ti GPU.

Similarly, at inference time, we split the scene into overlapping input
crops so that we can perform occupancy prediction of every crop in a
sliding-window manner. The crop size is determined to fit into GPU
memory. Note that the input crops overlap, such that no padding is
needed to explicitly handle the boundary between crops.

3.3 Experiments

We conduct three types of experiments to evaluate our method.
First, we perform object-level reconstruction on ShapeNet [24]
chairs, considering noisy point clouds and low-resolution occupancy
grids as inputs. Next, we compare our approach against several
baselines on the task of scene-level reconstruction using a syn-
thetic indoor dataset of various objects. Finally, we demonstrate
synthetic-to-real generalization by evaluating our model on real in-
door scenes [23, 44].

Datasets.

ShapeNet [24]: We use all 13 classes of the ShapeNet subset, vox-
elizations, and train/val/test split from Choy et al. [40]. Per-class
results can be found in supplementary.

Synthetic Indoor Scene Dataset: We create a synthetic dataset with
multiple objects from ShapeNet (chair, sofa, lamp, cabinet, table). We
consider scenes with 4 to 8 objects and for each type, we generate
1000 scenes, so there are 5000 scenes in total.

For a single scene, we sample the x-y ratio of the ground plane uni-
formly between 0.3 and 1.0. For each object in the scene, we sample a
rotation angle around the z-axis and a scaling factor uniformly from
an interval that depends on how many objects are in the scene in

41

3D Reconstruction with Scalable Neural Representations

total. We place the objects randomly in the scene via rejection sam-
pling. We draw 4 samples from a Bernoulli distribution to decide
whether to add a wall to the respective border of the scene. We sam-
ple the wall height uniformly from the interval between 0.2 and 0.4.
We further adhere to the object-level splits from [40] to not have sim-
ilar objects in scenes of different splits.

ScanNet v2 [44]: This dataset contains 1513 real-world rooms cap-
tured with an RGB-D camera. We sample point clouds from the pro-
vided meshes for testing.

Matterport3D [23]: Matterport3D contains 90 buildings with multi-
ple rooms on different floors captured using a Matterport Pro Cam-
era. Similar to ScanNet, we sample point clouds for evaluating our
model on Matterport3D.

Baselines.

ONet [144]: Occupancy Networks is a state-of-the-art implicit 3D
reconstruction model. It uses a fully-connected network architecture
and a global encoding of the input. We compare against this method
in all of our experiments.

PointConv: We construct another simple baseline by extracting
point-wise features using PointNet++ [173], interpolating them us-
ing Gaussian kernel regression and feeding them into the same fully-
connected network used in our approach. While this baseline uses
local information, it does not exploit convolutions. We adopt the Py-
Torch implementation from [251].

More specifically, we first calculate the Euclidean distance between
a query point and all points in the input point cloud. The weights
are then computed using a Gaussian kernel with 0.1 as the defined
variance. After performing weight normalization, we acquire inter-
polated point-wise features for query points and estimate their occu-
pancy probability with an occupancy network as discussed before.
We train PointConv end-to-end by backpropagating through the con-
volutional operations and the Gaussian kernel regression.

42

3.3 Experiments

SPSR [97]: Screened Poisson Surface Reconstruction (SPSR) is a
traditional 3D reconstruction technique which operates on oriented
point clouds as input. Note that in contrast to all other methods,
SPSR requires additional surface normals which are often hard to
obtain for real-world scenarios.

Training Details.

All methods are trained for at least 300000 iterations. We use the
Adam optimizer [101] with a learning rate of 10−4 for all methods.
We perform evaluations on the validation set every 10000 iterations
and pick the model for testing which performs best wrt. volumetric
IoU on the validation set.

Object-Level Reconstruction. For the reconstruction from point
cloud experiments, we use a batch size of 32 for all our methods in-
cluding ONet [144], and 24 for the baseline PointConv. For the voxel
super-resolution tasks, we train all methods with a batch size of 64.

Scene-Level Reconstruction. We use the official implementation1 of
ONet [144] but change the batch size to 12 in order to fit into GPU
memory. For the baseline PointConv the batch size is set to 16. Our
lightweight architectures allow us to set the batch size to 32 for our
plane encoder for a resolution of 1282 and 3 × 1282, as well as the
volumetric encoder for a resolution of 323. For our variant combining
2D and 3D features, the batch size is 24, while we use a batch size of
6 for our volumetric approach with a resolution of 643.

Metrics.

Following [144], we consider Volumetric IoU, Chamfer Distance,
Normal Consistency for evaluation. We further report F-Score [211]
with the default threshold value of 1% unless otherwise specified.

Volumetric Intersection over Union (IoU). LetMpred andMGT be

1https://github.com/autonomousvision/occupancy networks

43

https://github.com/autonomousvision/occupancy_networks

3D Reconstruction with Scalable Neural Representations

the set of all points that are inside or on the surface of the pre-
dicted and ground truth mesh, respectively. The volumetric IoU is
the volume of two meshes’ intersection divided by the volume of
their union:

IoU(Mpred,MGT) ≡
|Mpred ∩MGT|
|Mpred ∪MGT|

. (3.3)

We randomly sample 100k points from the bounding boxes and de-
termine if the points lie inside or outside Mpred and MGT, respec-
tively.

Chamfer-L1. Define accuracy and completeness ofMpred wrt.MGT:

Accuracy(Mpred|MGT) ≡
1

|∂Mpred|
∫

∂Mpred

min
q∈∂MGT

‖p− q‖dp (3.4)

Complete.(Mpred|MGT) ≡
1

|∂MGT|
∫

∂MGT

min
p∈∂Mpred

‖p− q‖dq (3.5)

where ∂Mpred and ∂MGT denote the surfaces of the two meshes.
Then, the Chamfer-L1 distance between two meshes is defined as
below:

Chamfer-L1(Mpred,MGT) =

1
2
(Accuracy(Mpred|MGT) + Completeness(Mpred|MGT))

(3.6)

Normal Consistency. we define the normal consistency score as

Normal-Con.(Mpred,MGT) ≡
1

2 |∂Mpred|
∫

∂Mpred

|〈n(p), n(proj2(p))〉|dp

+
1

2 |∂MGT|
∫

∂MGT

|〈n(proj1(q)), n(q)〉|dq

(3.7)

where 〈·, ·〉 indicates the inner product, n(p) and n(q) the (unit) nor-
mal vectors on the mesh surface ∂Mpred and ∂MGT, respectively and

44

3.3 Experiments

proj2(p) and proj1(q) denote the projections of p and q onto ∂MGT
and ∂Mpred respectively.

F-Score. We first define recall and precision. As discussed in [211],
recall counts how many points on the GT mesh lie within a certain
distance to the reconstruction. Precision counts the percentage of
points on the reconstructed mesh that lie within a certain distance to
the GT. The F-Score is then defined as the harmonic mean between
precision and recall:

F-Score = 2 · Precision · Recall
Precision + Recall

(3.8)

3.3.1 Object-Level Reconstruction

We first evaluate our method on the single object reconstruction task
on ShapeNet [24]. We consider three different types of 3D input:
noisy point clouds, noisy partial point clouds, and low-resolution
voxels. For the first case, we sample 3000 points from the mesh and
apply Gaussian noise with zero mean and standard deviation 0.05.
For the partial point clouds, we sample 3000 points from the cropped
GT mesh, where we randomly cut out parts of the original mesh. As
for the last case, we use coarse 323 voxelizations from [144]. For the
query points (i.e., for which supervision is provided), we follow [144]
and uniformly sample 2048 and 1024 points for noisy (partial) point
clouds and low-resolution voxels, respectively. Due to the different
encoder architectures for these tasks, we set the batch size to 32 for
point cloud reconstruction and 64 for voxel super-resolution, respec-
tively.

Reconstruction from Point Clouds. Table 3.1, Fig. 3.3, Fig. 3.4,
Fig. 3.5, and Fig. 3.6 show quantitative and qualitative results. Com-
pared to the baselines, all variants of our method achieve equal or
better results on all three metrics. As evidenced by the training pro-
gression plot on the right, our method reaches a high validation

45

3D Reconstruction with Scalable Neural Representations

GPU Memory IoU Chamfer-L1 Normal C. F-Score

PointConv 5.1G 0.689 0.126 0.858 0.644
ONet [144] 7.7G 0.761 0.087 0.891 0.785
Ours-2D (642) 1.6G 0.833 0.059 0.914 0.887
Ours-2D (3× 642) 2.4G 0.884 0.044 0.938 0.942
Ours-3D (323) 5.9G 0.870 0.048 0.937 0.933

1 6 11 16 21 26 31
Training Iterations (×10K)

0.5

0.6

0.7

0.8

V
al

id
at

io
n

Io
U

PointConv

ONet

Ours-2D (642)

Ours-2D (3× 642)

Ours-3D (323)

Table 3.1: Object-Level 3D Reconstruction from Point Clouds. Top: We report GPU
memory, IoU, Chamfer-L1 distance, Normal Consistency, and F-Score for our approach (2D
plane and 3D voxel grid dimensions in brackets), the baselines ONet [144] and PointConv
on ShapeNet (mean over all 13 classes). Bottom: The training progression plot shows that
our method converges faster than the baselines.

IoU after only a few iterations. This verifies our hypothesis that
leveraging convolutions and local features benefits 3D reconstruc-
tion in both accuracy and efficiency. The results show that, com-
pared to PointConv which directly aggregates features from point
clouds, projecting point features to planes or volumes followed by
2D/3D CNNs is more effective. In addition, decomposing 3D rep-
resentations from volumes into three planes with higher resolution
(642 vs. 323) improves performance while at the same time requiring
less GPU memory.

46

3.3 Experiments

In
pu

t
Po

in
tC

on
v

O
N

et
[1

44
]

O
ur

s-
2D

O
ur

s-
2D

O
ur

s-
3D

G
T

m
es

h
(6

42)
(3
×

64
2)

(3
23)

Fi
gu

re
3.

3:
O

bj
ec

t-
Le

ve
l3

D
R

ec
on

st
ru

ct
io

n
fr

om
P

oi
nt

C
lo

ud
s

(P
ar

t
1)

.C
om

pa
ri

so
n

of
ou

r
co

nv
ol

ut
io

na
lr

ep
re

se
nt

a-
tio

n
to

O
N

et
an

d
Po

in
tC

on
v

on
Sh

ap
eN

et
ob

je
ct

s.

47

3D Reconstruction with Scalable Neural Representations

Input
PointC

onv
O

N
et[144]

O
urs-2D

O
urs-2D

O
urs-3D

G
T

m
esh

(64
2)

(3×
64

2)
(32

3)

Figure
3.4:

O
bject-Level3D

R
econstruction

from
P

oint
C

louds
(P

art
2).C

om
parison

ofour
convolutionalrepresenta-

tion
to

O
N

etand
PointC

onv
on

ShapeN
etobjects.

48

3.3 Experiments

In
pu

t
Po

in
tC

on
v

O
N

et
[1

44
]

O
ur

s-
2D

O
ur

s-
2D

O
ur

s-
3D

G
T

m
es

h
(6

42)
(3
×

64
2)

(3
23)

Fi
gu

re
3.

5:
O

bj
ec

t-
Le

ve
l3

D
R

ec
on

st
ru

ct
io

n
fr

om
P

oi
nt

C
lo

ud
s

(P
ar

t
3)

.C
om

pa
ri

so
n

of
ou

r
co

nv
ol

ut
io

na
lr

ep
re

se
nt

a-
tio

n
to

O
N

et
an

d
Po

in
tC

on
v

on
Sh

ap
eN

et
ob

je
ct

s.

49

3D Reconstruction with Scalable Neural Representations

Input
PointC

onv
O

N
et[144]

O
urs-2D

O
urs-2D

O
urs-3D

G
T

m
esh

(64
2)

(3×
64

2)
(32

3)

Figure
3.6:

O
bject-Level3D

R
econstruction

from
P

oint
C

louds
(P

art
4).C

om
parison

ofour
convolutionalrepresenta-

tion
to

O
N

etand
PointC

onv
on

ShapeN
etobjects.

50

3.3 Experiments

GPU Memory IoU Chamfer-L1 Normal C. F-Score

Input - 0.631 0.136 0.810 0.440
ONet [144] 4.8G 0.703 0.110 0.879 0.656
Ours-2D (642) 2.4G 0.652 0.145 0.861 0.592
Ours-2D (3× 642) 4.0G 0.752 0.092 0.905 0.735
Ours-3D (323) 10.8G 0.752 0.091 0.912 0.729

Table 3.2: Voxel Super-Resolution. 3D reconstruction results from low resolution vox-
elized inputs (323 voxels) on the ShapeNet dataset (mean over 13 classes).

Reconstruction from Partial Point Clouds. We also investigate the
ability of our method to reconstruct shapes from partial point clouds.
To this end, we first randomly select one axis of the x, y, z directions
and calculate its coordinate range r. Then, we uniformly sample
an offset between [0.7r, r] and filter out all points with coordinates
larger than the offset along that axis. The offset is always a positive
value, so e.g. for the z axis, we always crop from the top. Finally,
3000 points are uniformly sampled from the cropped point clouds.
Fig. 3.7 shows our qualitative results.

Voxel Super-Resolution. Besides noisy point clouds, we also eval-
uate the task of voxel super-resolution. Here, the goal is to re-
cover high-resolution details from coarse (323) voxelizations of the
shape. Table 3.2 and Fig. 3.8 show that our method with three planes
achieves comparable results over our volumetric method while re-
quiring only 37% of the GPU memory. In contrast to reconstruction
from point clouds, our single-plane approach fails at this task. We
hypothesize that a single plane is not sufficient for resolving ambi-
guities in the coarse but regularly structured voxel input.

Generalization. In the last experiment for the object-level recon-
struction, we want to investigate the generalizability of our proposed
method. To this end, we train only on the “chair” category and test
on “table”. In contrast to baselines, our method degrades gracefully

51

3D Reconstruction with Scalable Neural Representations

Input Ours-2D GT mesh Input Ours-2D GT mesh
(3× 642) (3× 642)

Figure 3.7: Object-Level 3D Reconstruction from Partial Point Clouds. We show
qualitative results on the ShapeNet “plane”, “car”, “chair” and “table” categories. Our
method correctly reconstruct 3D shapes from partial point clouds. Note that the models are
trained in all classes.

(Fig. 3.9). This emphasizes the importance of equivariant representa-
tions and geometric reasoning using both local and global features.

3.3.2 Scene-Level Reconstruction

To analyze whether our approach can scale to larger scenes, we now
reconstruct 3D geometry from point clouds on our synthetic indoor

52

3.3 Experiments

Input ONet [144] Ours-2D Ours-2D Ours-3D GT mesh
(642) (3× 642) (323)

Figure 3.8: Voxel Super-Resolution. Qualitative comparison between our method and
ONet using coarse voxelized inputs at resolution 323 voxels.

ONet [144] PointConv Ours-2D Ours-3D GT mesh
(3× 642) (323)

Figure 3.9: Generalization (Chair → Table). We analyze the generalization perfor-
mance of our method and the baselines by training them on the ShapeNet “chair” category
and evaluating them on the “table” category.

scene dataset. Due to the increasing complexity of the scene, we uni-
formly sample 10000 points as input point cloud and apply Gaussian
noise with a standard deviation of 0.05. During training, we sam-
ple 2048 query points, similar to object-level reconstruction. For our
plane-based methods, we use a resolution of 1282. For our volumet-

53

3D Reconstruction with Scalable Neural Representations

IoU Chamfer-L1 Normal C. F-Score

ONet [144] 0.475 0.203 0.783 0.541
PointConv 0.523 0.165 0.811 0.790
SPSR [97] - 0.223 0.866 0.810
SPSR [97] (trimmed) - 0.069 0.890 0.892
Ours-2D (1282) 0.795 0.047 0.889 0.937
Ours-2D (3× 1282) 0.805 0.044 0.903 0.948
Ours-3D (323) 0.782 0.047 0.902 0.941
Ours-3D (643) 0.849 0.042 0.915 0.964
Ours-2D-3D (3× 1282 + 323) 0.816 0.044 0.905 0.952

Table 3.3: Scene-Level Reconstruction on Synthetic Rooms. Quantitative comparison
for reconstruction from noisy point clouds on synthetic rooms. We do not report IoU for
SPSR because SPSR generates only a single surface for walls and the ground plane. To
ensure a fair comparison to SPSR, we compare all methods with only a single surface for
walls/ground planes when calculating Chamfer-L1 and F-Score.

ric approach, we investigate both 323 and 643 resolutions. Assuming
that the plane and volumetric features are complementary, we also
test the combination of the multi-plane and volumetric variants.

Table 3.3 and Fig. 3.10 show our results. All variants of our method
are able to reconstruct geometric details of the scenes and lead to
smooth results. In contrast, ONet and PointConv suffer from low
accuracy while SPSR leads to noisy surfaces. While high-resolution
canonical plane features capture fine details they are prone to noise.
Low-resolution volumetric features are instead more robust to noise,
yet produce smoother surfaces. Combining complementary volu-
metric and plane features improves results compared to considering
them in isolation. This confirms our hypothesis that plane-based and
volumetric features are complementary. However, the best results in
this setting are achieved when increasing the resolution of the volu-
metric features to 643.

54

3.3 Experiments
In

pu
t

O
N

et
[1

44
]

Po
in

tC
on

v
SP

SR
[9

7]

(t
ri

m
m

ed
)

O
ur

s-
2D

(3
×

12
82)

O
ur

s-
3D

(3
23)

O
ur

s-
2D

-3
D

(3
×

12
82

+
32

3)

G
T

M
es

h

Figure 3.10: Scene-Level Reconstruction on Synthetic Rooms. Qualitative compari-
son for point-cloud based reconstruction on the synthetic indoor scene dataset.

55

3D Reconstruction with Scalable Neural Representations

3.3.3 Ablation Study

In this section, we investigate on our synthetic indoor scene dataset
different feature aggregation strategies at similar GPU memory con-
sumption as well as different feature interpolation strategies.

Performance at Similar GPU Memory. Table 3.4a shows a compar-
ison of different feature aggregation strategies at similar GPU mem-
ory utilization. Our multi-plane approach slightly outperforms the
single plane and the volumetric approach in this setting. Moreover,
the increase in plane resolution for the single plane variant does not
result in a clear performance boost, demonstrating that higher reso-
lution does not necessarily guarantee better performance.

Feature Interpolation Strategy. To analyze the effect of the feature
interpolation strategy in the convolutional decoder of our method,
we compare nearest neighbor and bilinear interpolation for our
multi-plane variant. The results in Table 3.4b clearly demonstrate
the benefit of bilinear interpolation.

Network Architecture. Table 3.5 provides an ablation study of the
number of ResNet blocks and hidden dimensions. To balance the
memory efficiency and performance, we use a hidden feature dimen-
sion of 32 and 5 ResNet blocks for the occupancy prediction network
for all experiments.

3.3.4 Reconstruction on Real-World Datasets

Next, we investigate the generalizability of our method. Towards
this goal, we evaluate our models trained on the synthetic indoor
scene dataset on the real world datasets ScanNet v2 [44] and Mat-
terport3D [23]. Similar to our previous experiments, we use 10000
points sampled from the meshes as input.

56

3.3 Experiments
In

pu
t

O
N

et
[1

44
]

SP
SR

[9
7]

(t
ri

m
m

ed
)

O
ur

s-
2D

-3
D

(3
×

12
82

+
32

3)

O
ur

s-
3D

(6
43)

Figure 3.11: Scene-Level Reconstruction on ScanNet. Qualitative results for point-
based reconstruction on ScanNet [44]. All learning-based methods are trained on the syn-
thetic room dataset and evaluated on ScanNet.

57

3D Reconstruction with Scalable Neural Representations

GPU Memory IoU Chamfer-L1 Normal C. F-Score

Ours-2D (1922) 9.5GB 0.773 0.047 0.889 0.937
Ours-2D (3× 1282) 9.3GB 0.805 0.044 0.903 0.948
Ours-3D (323) 8.5GB 0.782 0.047 0.902 0.941

(a) Performance at similar GPU Memory

IoU Chamfer-L1 Normal C. F-Score

Nearest Neighbor 0.766 0.052 0.885 0.920
Bilinear 0.805 0.044 0.903 0.948

(b) Interpolation Strategy

Table 3.4: Ablation Study on Synthetic Rooms. We compare the performance of differ-
ent feature aggregation strategies at similar GPU memory in Table 3.4a and evaluate two
different sampling strategies in Table 3.4b.

Reconstruction for ScanNet. Our results in Table 3.6 show that
among all our variants, the volumetric-based models perform best,
indicating that the plane-based approaches are more affected by the
domain shift. We find that 3D CNNs are more robust to noise as they
aggregate features from all neighbors which results in smooth out-
puts. Furthermore, all variants outperform learning-based baselines
by a significant margin.

The qualitative comparison in Fig. 3.11 shows that our model is
able to smoothly reconstruct scenes with geometric details at vari-
ous scales. While Screened PSR [97] also produces reasonable recon-
structions, it tends to close the resulting meshes and hence requires a
carefully chosen trimming parameter. In contrast, our method does
not require additional hyperparameters.

Reconstruction for Large Matterport3D Scene. Finally, we investi-
gate the scalability of our method to larger scenes that comprise mul-
tiple rooms and multiple floors. For this experiment, we exploit the
Matterport3D dataset [23]. Unlike before, we implemented a fully

58

3.3 Experiments

No. Blocks Hidden Dim. GPU Memory IoU Chamfer-L1 Normal C.

3 32 2.2G 0.857 0.050 0.936
5 32 2.4G 0.861 0.048 0.937
5 256 3.8G 0.864 0.047 0.941

Table 3.5: Ablation Study on Network Architecture. We train our 3-plane method
with a resolution of 642 on the ShapeNet “chair” class with different numbers of ResNet
blocks and hidden feature dimensions.

Chamfer-L1 F-Score

ONet [144] 0.398 0.390
PointConv 0.316 0.439
SPSR [97] 0.293 0.731
SPSR [97] (trimmed) 0.086 0.847

Chamfer-L1 F-Score

Ours-2D (1282) 0.139 0.747
Ours-2D (3× 1282) 0.142 0.776
Ours-3D (323) 0.095 0.837
Ours-3D (643) 0.077 0.886
Ours-2D-3D (3× 1282 + 323) 0.099 0.847

Table 3.6: Scene-Level Reconstruction on ScanNet. Evaluation of point-based recon-
struction on the real-world ScanNet dataset. As ScanNet does not provide watertight
meshes, we trained all methods on the synthetic indoor scene dataset. Remark: In Scan-
Net, walls/floors are only observed from one side. To not incorrectly penalize methods for
predicting walls and floors with thickness (0.01 in our training set), we chose an F-Score
threshold of 1.5% for this experiment.

convolutional version of our 3D model that can be scaled to any size
by running on overlapping crops of the input point cloud in a sliding
window fashion. The overlap is determined by the size of the recep-
tive field to ensure the correctness of the results. Details are provided
in Sec. 3.2.6.

Fig. 3.1, Fig. 3.12, Fig. 3.13 show the resulting 3D reconstruction. Our
method reconstructs the details inside each room while adhering to
the room layout. Given a reasonable amount of surface points, we
can see that our method is able to reconstruct scenes of different
sizes, ranging from apartments to entire buildings. Note that the
geometry and point distribution of the Matterport3D dataset differs
significantly from the synthetic indoor scene dataset on which our
model is trained. This demonstrates that our method is able to gen-

59

3D Reconstruction with Scalable Neural Representations

(a) Ours

(b) GT Mesh

Figure 3.12: Scene-Level Reconstruction on Matterport3D. Scene size: 18.5m ×
9.6m× 2.2m. No. points in input point cloud: 60K.

eralize not only to unseen classes, but also to novel room layouts and
sensor characteristics.

We further show the comparison over SPSR [97] in Fig. 3.14
and Fig. 3.15. Note that SPSR requires additional surface normals as
input, whereas our method only needs raw point clouds. Moreover,
SPSR requires a carefully chosen trimming factor. In contrast, our
method does not require any such hyperparameter tuning. Our
results indicate that our method better preserves details and the
reconstructions contain fewer artifacts.

60

3.4 Discussion

(a) Ours (b) GT Mesh

Figure 3.13: Scene-Level Reconstruction on Matterport3D. Scene size: 11.3m ×
6.6m× 4.0m. No. points in input point cloud: 100K.

3.4 Discussion

We introduced Convolutional Occupancy Networks, a novel shape
representation that combines the expressiveness of convolutional
neural networks with neural implicit representations. We analyzed
the tradeoffs between 2D and 3D feature representations and found
that incorporating convolutional operations facilitates generaliza-
tion to unseen classes, novel room layouts and large-scale indoor
spaces. Our 3-plane model is memory-efficient and excels in syn-
thetic scenes with higher feature resolutions. Conversely, our 3D
volumetric model performs better in real-world situations but uses
more memory.

Limitations and Future Works. Our method is only translation
equivariant for multiples of the voxel size and not rotation equiv-
ariant. Moreover, there is still a performance gap between synthetic
and real data. While the focus of this work was on learning-based
3D reconstruction, in future work, we plan to apply our novel rep-

61

3D Reconstruction with Scalable Neural Representations

resentation to other domains such as implicit appearance modeling
and 4D reconstruction.

62

3.4 Discussion

SPSR (trimming factor = 6) [97]

Ours (fully-convolutional)

GT mesh

Figure 3.14: Comparison of Building-Level Reconstruction on Matterport3D. Scene
size: 19.7m× 10.9m× 9.4m. 200K points are sampled from the GT mesh and used as the
input to SPSR and our method. 63

3D Reconstruction with Scalable Neural Representations

SPSR (trimming factor = 6) [97]

Ours (fully-convolutional)

GT mesh

Figure 3.15: Comparison of Building-Level Reconstruction on Matterport3D. Scene
size: 15.7m× 12.3m× 4.5m. 200K points are sampled from the GT mesh and used as the
input to SPSR and our method.

64

C H A P T E R 4
3D Reconstruction with a
Differentiable Poisson Solver

In the previous chapter, we showed the potential of neural implicit
representations in facilitating detailed 3D reconstruction. However,
their implicit nature results in slow inference speed and requires
careful initialization, which limits their real-world scenarios. In light
of this, this chapter pivots to the classic yet widely adopted point
cloud representation. We introduce a differentiable point-to-mesh
layer, leveraging a differentiable formulation of Poisson Surface Re-
construction (PSR). This enables GPU-accelerated fast solution of the
indicator function given an oriented point cloud. The inherent dual-
ity between points and meshes allows us to represent shapes as ori-
ented point clouds, which are explicit, lightweight, and expressive.
Our novel hybrid scene representations offer some benefits: Com-
pared to neural implicit representations, not only do they provide
enhanced interpretability and quicker inference (at a scale of an or-
der of magnitude faster than neural implicit representations),. but

65

3D Reconstruction with a Differentiable Poisson Solver

they also produce topology-agnostic, watertight manifold surfaces,
setting them apart from other explicit representations like points
clouds, patches, and meshes.

4.1 Introduction

As we already know, shape representations are central to many
of the recent advancements in 3D computer vision and computer
graphics, ranging from neural rendering [145, 148, 164, 177, 196] to
shape reconstruction [29, 90, 144, 161, 166, 171, 256]. While conven-
tional representations such as point clouds and meshes are efficient
and well-studied, they also suffer from several limitations: Point
clouds are lightweight and easy to obtain, but do not directly en-
code surface information. Meshes, on the other hand, are usually
restricted to fixed topologies. More recently, neural implicit repre-
sentations [29, 144, 166] have shown promising results for represent-
ing geometry due to their flexibility in encoding varied topologies,
and their easy integration with differentiable frameworks. How-
ever, since such representations implicitly encode surface informa-
tion, extracting the underlying surface is typically slow, as they
require numerous network evaluations in 3D space for extracting
complete surfaces using marching cubes [29, 144, 166], or along
rays for intersection detection in the context of volumetric render-
ing [148, 161, 165, 256].

In this work, we introduce a novel Poisson solver that performs
fast GPU-accelerated Differentiable Poisson Surface Reconstruction
(DPSR) and solves for an indicator function from an oriented point
cloud in a few milliseconds. Thanks to the differentiablility of our
Poisson solver, gradients from a loss on the output mesh or a loss
on the intermediate indicator grid can be efficiently backpropagated
to update the oriented point cloud representation. This differen-
tial bridge between points, indicator functions, and meshes allows
us to represent shapes as oriented point clouds. We, therefore, call

66

4.1 Introduction

this shape representation Shape-As-Points (SAP). Compared to exist-
ing shape representations, Shape-As-Points has the following advan-
tages (see also Table 4.1):

Efficiency: SAP has a low memory footprint as it only requires stor-
ing a collection of oriented point samples at the surface, rather than
volumetric quantities (voxels) or a large number of network param-
eters for neural implicit representations. Using spectral methods,
the indicator field can be computed efficiently (12 ms at 1283 reso-
lution1), compared to the typical rather slow query time of neural
implicit networks (330 ms using [144] at the same resolution). Ac-
curacy: The resulting mesh can be generated at high resolutions,
is guaranteed to be watertight, free from self-intersections and also
topology-agnostic. Initialization: It is easy to initialize SAP with a
given geometry such as template shapes or noisy observations. In
contrast, neural implicit representations are harder to initialize, ex-
cept for few simple primitives such as spheres [2]. See supplemen-
tary for more discussions.

To investigate the aforementioned properties, we perform a set of
controlled experiments. Moreover, we demonstrate state-of-the-art
performance in reconstructing surface geometry from unoriented
point clouds in two settings: an optimization-based setting that does
not require training and is applicable to a wide range of shapes, and
a learning-based setting for conditional shape reconstruction that is
robust to noisy point clouds and outliers. In summary, the main con-
tributions of this chapter are as follows.

• We present Shape-As-Points, a novel shape representation that is inter-
pretable, lightweight, and yields high-quality watertight meshes at low
inference times.

• The core of the Shape-As-Points representation is a versatile, differen-
tiable and generalizable Poisson solver that can be used for a range of
applications.

1On average, our method requires 12 ms for computing a 1283 indicator grid from 15K points
on a single NVIDIA GTX 1080Ti GPU. Computing a 2563 indicator grid requires 140 ms.

67

3D Reconstruction with a Differentiable Poisson Solver

R
epresentations

Points
[52]

Voxels
[40]

M
eshes
[224]

Patches
[65]

Im
plicits
[144]

SA
P

(O
urs)

G
T

Efficiency
G

rid
EvalTim

e
(128

3)
n/a

n/a
n/a

n/a
0.33s

0.012s
Priors

Easy
Initialization

4
4

4
8

8
4

Q
uality

W
atertight

8
4

4
8

4
4

N
o

Self-intersection
n/a

n/a
8

8
4

4

Topology-A
gnostic

4
4

8
4

4
4

Table
4.1:O

verview
ofD

ifferent
Shape

R
epresentations.Shape-A

s-Points
produces

higher
quality

geom
etry

com
pared

to
other

explicitrepresentations
[40,52,65]and

requires
significantly

less
inference

tim
e

for
extracting

geom
etry

com
pared

to
neuralim

plicitrepresentations
[144].

68

4.2 Method

• We study various properties inherent to the Shape-As-Points representa-
tion, including inference time, sensitivity to initialization, and topology-
agnostic representation capacity.

• We demonstrate state-of-the-art reconstruction results from noisy unori-
ented point clouds at a significantly reduced computational budget com-
pared to existing methods.

4.2 Method

At the core of the Shape-As-Points representation is a differentiable
Poisson solver, which can be used for both optimization-based and
learning-based surface estimation. We first introduce the Poisson
solver in Sec. 4.2.1. Next, we investigate two applications using
our solver: optimization-based 3D reconstruction (Sec. 4.2.2) and
learning-based 3D reconstruction (Sec. 4.2.3).

4.2.1 Differentiable Poisson Solver

The key step in Poisson Surface Reconstruction [97,98] involves solv-
ing the Poisson Equation. Let x ∈ R3 denote a spatial coordinate
and n ∈ R3 denote its corresponding normal. The Poisson Equa-
tion arises from the insight that a set consisting of point coordinates
and normals {p = (c, n)} can be viewed as samples of the gradi-
ent of the underlying implicit indicator function χ(x) that describes
the solid geometry. We define the normal vector field as a super-
position of pulse functions v(x) = ∑(ci ,ni)∈{p} δ(x − ci, ni), where
δ(x, n) = {n if x = 0 and 0 otherwise}. By applying the divergence
operator, the variational problem transforms into the standard Pois-
son equation:

∇2χ := ∇ · ∇χ = ∇ · v (4.1)

In order to solve this set of linear Partial Differential Equations
(PDEs), we discretize the function values and differential operators.

69

3D Reconstruction with a Differentiable Poisson Solver

Without loss of generality, we assume that the normal vector field v
and the indicator function χ are sampled at r uniformly spaced loca-
tions along each dimension. Denote the spatial dimensionality of the
problem to be d. Without loss of generality, we consider the three di-
mensional case where n := r× r× r for d = 3. We have the indicator
function χ ∈ Rn, the point normal field v ∈ Rn×d, the gradient op-
erator ∇ : Rn 7→ Rn×d, the divergence operator (∇·) : Rn×d 7→ Rn,
and the derived laplacian operator ∇2 := ∇ · ∇ : Rn 7→ Rn. Un-
der such a discretization scheme, solving for the indicator function
amounts to solving the linear system by inverting the divergence op-
erator subject to boundary conditions of surface points having zero
level set. Following [98], we fix the overall scale to m = 0.5 at x = 0:

χ = (∇2)−1∇ · v s.t. χ|x∈{c} = 0 and abs(χ|x=0) = m (4.2)

Point Rasterization. We obtain the uniformly discretized point nor-
mal field v by rasterizing the point normals onto a uniformly sam-
pled voxel grid. We can differentiably perform point rasterization via
inverse trilinear interpolation, similar to the approach in [97, 98]. We
scatter the point normal values to the voxel grid vertices, weighted
by the trilinear interpolation weights. The point rasterization process
hasO(n) space complexity, linear with respect to the number of grid
cells, and O(N) time complexity, linear with respect to the number
of points. See appendix A.1.1 for details.

Spectral Methods for Solving PSR. In contrast to the finite-element
approach taken in [97, 98], we solve the PDEs using spectral meth-
ods [18]. While spectral methods are commonly used in scientific
computing for solving PDEs and in some cases applied to computer
vision problems [114], we are the first to apply them in the context
of Poisson Surface Reconstruction. Unlike finite-element approaches
that depend on irregular data structures such as octrees or tetra-
hedral meshes for discritizing space, spectral methods can be effi-
cently solved over a uniform grid as they leverage highly optimized
Fast Fourier Transform (FFT) operations that are well supported for
GPUs, TPUs, and mainstream deep learning frameworks. Spectral

70

4.2 Method

methods decompose the original signal into a linear sum of functions
represented using the sine / cosine basis functions whose derivatives
can be computed analytically. This allows us to easily approximate
differential operators in spectral space. We denote the spectral do-
main signals with a tilde symbol, i.e., ṽ = FFT(v). We first solve for
the unnormalized indicator function χ′, not accounting for boundary
conditions.

χ′ = IFFT(χ̃) χ̃ = g̃σ,r(u)�
iu · ṽ
−2π‖u‖2 g̃σ,r(u) = exp

(
− 2

σ2‖u‖2

r2

)

(4.3)
where the spectral frequencies are denoted as u := (u, v, w) ∈ Rn×d

corresponding to the x, y, z spatial dimensions, and IFFT(χ̃) repre-
sents the inverse fast Fourier transform of χ̃. g̃σ,r(u) is a Gaussian
smoothing kernel of bandwidth σ at grid resolution r in the spec-
tral domain. The Gaussian kernel is used to mitigate ringing effects
as a result of the Gibbs phenomenon from rasterizing the point nor-
mals. We denote the element-wise product as � : Rn ×Rn 7→ Rn,
the L2-norm as ‖ · ‖2 : Rn×d 7→ Rn, and the dot product as (·) :
Rn×d ×Rn×d 7→ Rn. Finally, we subtract by the mean of the indica-
tor function in the point set and scale the indicator function to obtain
the solution to the PSR problem in Eqn. 4.2:

χ =
m

abs(χ′|x=0)︸ ︷︷ ︸
scale

(
χ′ − 1

|{c}| ∑
c∈{c}

χ′|x=c

)

︸ ︷︷ ︸
subtract by mean

(4.4)

A detailed derivation of our differentiable PSR solver is provided in
the appendix A.1.2.

4.2.2 SAP for Optimization-based 3D Reconstruction

We can use the proposed differentiable Poisson solver for various
applications. First, we consider the classical task of surface recon-
struction from unoriented point clouds. The overall pipeline for this

71

3D Reconstruction with a Differentiable Poisson Solver

Noisy Input

Optimization-based Setting

Learning-based Setting

Offsets
Normals

DPSR

DPSR

Shape-As-Points

Target

Marching
Cubes

Indicator Function
Ground Truth

Mesh Output

SamplePSR

Marching
Cubes

Features

Optimize Parameters

Optimize
Points and Normals

Figure 4.1: Model Overview. Top: Pipeline for optimization-based single object recon-
struction. The Chamfer loss on the target point cloud is backpropagated to the source point
cloud w/ normals for optimization. Bottom: Pipeline for learning-based surface reconstruc-
tion. Unlike the optimization-based setting, here we provide supervision at the indicator grid
level, since we assume access to watertight meshes for supervision, as is common practice in
learning-based single-object reconstruction.

setting is illustrated in Fig. 4.1 (top). We now provide details about
each component.

Forward pass. It is natural to initialize the oriented 3D point cloud
serving as 3D shape representation using the noisy 3D input points
and corresponding (estimated) normals. However, to demonstrate
the flexibility and robustness of our model, we purposefully initial-
ize our model using a generic 3D sphere with radius r in our ex-
periments. Given the orientated point cloud, we apply our Poisson
solver to obtain an indicator function grid, which can be converted
to a mesh using Marching Cubes [136].

Backward pass. For every point pmesh sampled from the meshM,
we calculate a bi-directional L2 Chamfer Distance LCD with respect
to the input point cloud. To backpropagate the loss LCD through

72

4.2 Method

pmesh to point p in our source oriented point cloud, we decompose
the gradient using the chain rule:

∂LCD

∂p
=

∂LCD

∂pmesh

∂pmesh
∂χ

∂χ

∂p
(4.5)

All terms in (4.5) are differentiable except for the middle one ∂pmesh
∂χ

which involves Marching Cubes. However, this gradient can be ef-
fectively approximated by the inverse surface normal [178]:

∂pmesh
∂χ

= −nmesh (4.6)

where nmesh is the normal of the point pmesh. Different from
MeshSDF [178] that uses the gradients to update the latent code of
a pretrained implicit shape representation, our method updates the
source point cloud using the proposed differentiable Poisson solver.

Resampling. To increase the robustness of the optimization process,
we uniformly resample points and normals from the largest mesh
component every 200 iterations, and replace all points in the orig-
inal point clouds with the resampled ones. This resampling strat-
egy eliminates outlier points that drift away during the optimization,
and enforces a more uniform distribution of points.

Coarse-to-fine. To further decrease run-time, we consider a coarse-
to-fine strategy during optimization. More specifically, we start opti-
mizing at an indicator grid resolution of 323 for 1000 iterations, from
which we obtain a coarse shape. Next, we sample from this coarse
mesh and continue optimization at a resolution of 643 for 1000 iter-
ations. We repeat this process until we reach the target resolution
(2563) at which we acquire the final output mesh.

4.2.3 SAP for Learning-based 3D Reconstruction

We now consider the learning-based 3D reconstruction setting in
which we train a conditional model that takes a noisy, unoriented

73

3D Reconstruction with a Differentiable Poisson Solver

point cloud as input and outputs a 3D shape. More specifically, we
train the model to predict a clean oriented point cloud, from which
we obtain a watertight mesh using our Poisson solver and March-
ing Cubes. We leverage the differentiability of our Poisson solver to
learn the parameters of this conditional model. Following common
practice, we assume watertight meshes as ground truth and conse-
quently supervise directly with the ground truth indicator grid ob-
tained from these meshes. Fig. 4.1 (bottom) illustrates the pipeline of
our architecture for the learning-based surface reconstruction task.

Architecture. We first encode the unoriented input point cloud co-
ordinates {c} into a feature φ. The resulting feature should encapsu-
late both local and global information about the input point cloud.
We utilize the convolutional point encoder proposed in [171] for this
purpose. Note that in the following, we will use φθ(c) to denote the
features at point c, dropping the dependency of φ on the remaining
points {c} for clarity. Also, we use θ to refer to network parameters
in general.

Given their features, our objective is to estimate both offsets and nor-
mals for every input point c in the point cloud {c}. We use a shallow
Multi-Layer Perceptron (MLP) fθ to predict the offset for c:

∆c = fθ(c, φθ(c)) (4.7)

where φ(c) is obtained from the feature volume using trilinear in-
terpolation. We predict the k offsets per input point, where k ≥ 1.
We add the offsets ∆c to the input point position c and call the up-
dated point position ĉ. Additional offsets allow us to densify the
point cloud, leading to enhanced reconstruction quality. We choose
k = 7 for all learning-based reconstruction experiments (see ablation
study in Table 4.6). For each updated point ĉ, we use a second MLP
gθ to predict its normal:

n̂ = gθ(ĉ, φθ(ĉ)) (4.8)

We use the same decoder architecture as in [171] for both fθ and gθ .
The network comprises 5 layers of ResNet blocks with a hidden di-
mension of 32. These two networks fθ and gθ do not share weights.

74

4.3 Experiments

Training and Inference. During training, we obtain the estimated
indicator grid χ̂ from the predicted point clouds (ĉ, n̂) using our dif-
ferentiable Poisson solver. Since we assume watertight and noise-
free meshes for supervision, we acquire the ground truth indicator
grid by running PSR on densely sampled point clouds of the ground
truth meshes with the corresponding ground truth normals. This
avoids running Marching Cubes at every iteration and accelerates
training. We use the Mean Square Error (MSE) loss on the predicted
and ground truth indicator grid:

LDPSR = ‖χ̂− χ‖2 (4.9)

We implement all models in PyTorch [168] and use the Adam opti-
mizer [101] with a learning rate of 5e-4. During inference, we use our
trained model to predict normals and offsets, use DPSR to solve for
the indicator grid, and run Marching Cubes [136] to extract meshes.

4.3 Experiments

Following the exposition in the previous section, we conduct two
types of experiments to evaluate our method. First, we perform
single object reconstruction from unoriented point clouds. Next,
we apply our method to learning-based surface reconstruction on
ShapeNet [24], using noisy point clouds with or without outliers as
inputs.

Datasets. We use the following datasets for optimization-based re-
construction: 1) Thingi10K [279], 2) Surface reconstruction bench-
mark (SRB) [236] and 3) D-FAUST [10]. Similarly to previous work,
we used 5 objects per dataset [64, 71, 236]. For learning-based object-
level reconstruction, we consider all 13 classes of the ShapeNet [24]
subset, using the train/val/test split from [40].

Metrics. As in Chapter 3, we consider Chamfer Distance, Normal

75

3D Reconstruction with a Differentiable Poisson Solver

Consistency and F-Score with the default threshold of 1% for evalu-
ation, and also report optimization & inference time.

Baselines. In the optimization-based reconstruction setting, we com-
pare to network-based methods IGR [64] and Point2Mesh [71], as
well as Screened Poisson Surface Reconstruction2 (SPSR) [97] on
plane-fitted normals. To ensure that the predicted normals are con-
sistently oriented for SPSR, we propagate the normal orientation us-
ing the minimum spanning tree [278]. For learning-based surface
reconstruction, we compare against point-based Point Set Genera-
tion Networks (PSGN) [52], patch-based AtlasNet [65], voxel-based
3D-R2N2 [40], and ConvONet [171], which has recently reported
state-of-the-art results on this task. We use ConvONet in their best-
performing setting (3-plane encoders). SPSR is also used as a base-
line. In addition, to evaluate the importance of our differentiable PSR
optimization, we design another point-based baseline. This baseline
uses the same network architecture to predict points and normals.
However, instead of passing them to our Poisson solver and calcu-
lating LDPSR on the indicator grid, we directly supervise the point
positions with a bi-directional Chamfer distance, and an L1 Loss on
the normals as done in [139]. During inference, we also feed the
predicted points and normals to our PSR solver and run Marching
Cubes to obtain meshes.

Implementation Details.

Optimization-based 3D reconstruction. We use the official imple-
mentation of IGR3 [64]. We optimize IGR for 15000 iterations on each
object until convergence. For Point2Mesh [71], we follow the official
implementation4 and use 6000 iterations for each object. We generate
the initial mesh required by Point2Mesh following the description of
the original paper. Specifically, the initial mesh is provided as the
convex hull of the input point cloud for objects with a genus of zero.

2https://github.com/mkazhdan/PoissonRecon.
3https://github.com/amosgropp/IGR
4https://github.com/ranahanocka/point2mesh

76

https://github.com/mkazhdan/PoissonRecon
https://github.com/amosgropp/IGR
https://github.com/ranahanocka/point2mesh

4.3 Experiments

If the genus is larger than zero, we apply the watertight manifold
algorithm [83] using a low-resolution octree reconstruction on the
output mesh of SPSR to obtain a coarse initial mesh.

For our method, besides following the coarse-to-fine and resampling
strategy described in Sec. 4.2.2, we gradually increase the Gaussian
smoothing parameter σ in Eq. (4.3) when increasing the grid resolu-
tion: σ = 2 for a grid resolution of 323 and 643, σ = 3 when the grid
resolution is 1283. At the final resolution of 2563, we use σ = 3 for
objects with more details (e.g. objects in SRB [236] and D-FAUST [10],
and σ = 5 for the input points with noises (Thingi10K [279]) to
smooth the output mesh as well as to stabilze the optimization pro-
cess. We use the Adam optimizer [102] with a learning rate decay.
The learning rate is set to 2× 10−3 at the initial resolution of 323 with
a decay of 0.7 after every increase of the grid resolution. Moreover,
we run 1000 iterations at every grid resolution of 323, 643 and 1283,
and 200 iterations for 2563. 20000 source points and normals are used
by our method to represent the final shapes for all objects.

Learning-based 3D reconstruction. For AtlasNet [65], we use the
official implementation5 with 25 parameterizations. We change the
number of input points from 2500 (default) to 3000 for our setting.
Depending on the experiment, we add different noise levels or out-
lier points. We train ConvONet [171], PSGN [52], and 3D-R2N2 [40]
for at least 300000 iterations, and use Adam optimizer [101] with a
learning rate of 10−4 for all methods.

We train our method as well as Ours (w/o LDPSR) for all 3 noise lev-
els for 300000 iterations (roughly 2 days with 2 GTX 1080Ti GPUs)
and use Adam optimizer with a learning rate of 5× 10−4. We con-
sider a batch size of 32. To generate the ground truth PSR indica-
tor field χ in Eq. (4.9), first we sample 100000 points and the corre-
sponding point normals from the ground truth mesh, and input to
our DPSR at a grid resolution of 1283.

5https://github.com/ThibaultGROUEIX/AtlasNet

77

https://github.com/ThibaultGROUEIX/AtlasNet

3D Reconstruction with a Differentiable Poisson Solver

Dataset Method Chamfer-L1 (↓) F-Score (↑) Normal C. (↑) Time (s)

Thingi10K

IGR [64] 0.440 0.505 0.692 1842.3
Point2Mesh [71] 0.109 0.656 0.806 3714.7
SPSR [97] 0.223 0.787 0.896 9.3
Ours 0.054 0.940 0.947 370.1

SRB

IGR [64] 0.178 0.755 – 1847.6
Point2Mesh [71] 0.116 0.648 – 4707.9
SPSR [97] 0.232 0.735 – 9.2
Ours 0.076 0.830 – 326.0

D-FAUST

IGR [64] 0.235 0.805 0.911 1857.2
Point2Mesh [71] 0.071 0.855 0.905 3678.7
SPSR [97] 0.044 0.966 0.965 4.3
Ours 0.043 0.966 0.959 379.9

Table 4.2: Optimization-based 3D Reconstruction. Quantitative comparison on 3
datasets. Normal consistency cannot be evaluated on SRB as the provided GTs are unori-
ented point clouds. Optimization time is evaluated on a single GTX 1080Ti GPU.

4.3.1 Optimization-based 3D Reconstruction

In this part, we investigate whether our method can be used for
the single-object surface reconstruction task from unoriented point
clouds or scans. We consider three different types of 3D inputs:
point clouds sampled from synthetic meshes [279] with Gaussian
noise, real-world scans [236], and high-resolution raw scans of hu-
mans with comparably little noise [10].

Table 4.2 shows that our method achieves superior performance
compared to both classical methods and network-based approaches.
Note that the objects considered in this task are challenging due to
their complex geometry, thin structures, noisy and incomplete obser-
vations. While some of the baseline methods fail completely on these
challenging objects, our method achieves robust performance across
all datasets.

In particular, Fig. 4.2, Fig. 4.3, and Fig. 4.4 show that IGR occasionally
creates meshes in free space, as this is not penalized by its optimiza-
tion objective when point clouds are unoriented. Both, Point2Mesh

78

4.3 Experiments

Input IGR [64] Point2Mesh [71] SPSR [97] Ours GT mesh

Figure 4.2: Optimization-based 3D Reconstruction on Thingi10K Dataset [279].
Input point clouds are downsampled for visualization.

and our method alleviate this problem by optimizing for the Cham-
fer distance between the estimated mesh and the input point clouds.
However, Point2Mesh requires an initial mesh as input of which the
topology cannot be changed during optimization. Thus, it relies on
SPSR to provide an initial mesh for objects with a genus larger than
0 and suffers from inaccurate initialization [71]. Furthermore, com-
pared to both IGR and Point2Mesh, our method converges faster.

While SPSR is even more efficient, it suffers from incorrect normal es-

79

3D Reconstruction with a Differentiable Poisson Solver

Input IGR [64] Point2Mesh [71] SPSR [97] Ours GT points

Figure 4.3: Optimization-based 3D Reconstruction on SRB Dataset [236]. Input
point clouds are downsampled for visualization.

timation on noisy input point clouds, which is a non-trivial task on
its own. In contrast, our method demonstrates more robust behav-
ior as we optimize points and normals guided by the Chamfer dis-
tance. Note that in this single object reconstruction task, our method
is not able to complete large unobserved regions (e.g., the bottom of
the person’s feet in Fig. 4.4 is unobserved and hence not completed).
This limitation can be addressed using learning-based object-level
reconstruction as discussed next.

80

4.3 Experiments

Input IGR [64] Point2Mesh [71] SPSR [97] Ours GT points

Figure 4.4: Optimization-based 3D Reconstruction on D-FAUST Dataset [10]. In-
put point clouds are downsampled for visualization.

4.3.2 Ablation Study for Optimization-based Setting

Ablation Study of Point Resampling Strategy. In Table 4.3 and
Fig. 4.5, we compare the reconstructed shapes with and without
the proposed resampling strategy. Our method is able to produce
reasonable reconstructions even without the resampling strategy,
but the shapes are much noisier. Since we directly optimize the
source point positions and normals without any additional con-
straints, the optimized point clouds can be unevenly distributed as

81

3D Reconstruction with a Differentiable Poisson Solver

Dataset Method Chamfer-L1 (↓) F-Score (↑) Normal C. (↑)

Thingi10K
Ours (w/o resampling) 0.061 0.897 0.902
Ours 0.053 0.941 0.947

DGP
Ours (w/o resampling) 0.077 0.813 –
Ours 0.067 0.848 –

D-FAUST
Ours (w/o resampling) 0.044 0.964 0.952
Ours 0.043 0.965 0.959

Table 4.3: Ablation Study of Resampling Strategy. On all datasets, our resampling
strategy leads to improved results. For D-FAUST, the increase is the lowest because the
supervision point clouds are noise free. Note that normal consistency cannot be evaluated
on SRB as this dataset provides only unoriented point clouds.

Th
in

gi
10

K
SR

B

Point cloud Mesh Point cloud Mesh
Ours w/o resampling Ours GT

Figure 4.5: Ablation Study of Resampling Strategy. We show the optimized point
cloud and the reconstructed mesh without and with the resampling strategy. Using the
point resampling strategy leads to a more uniformly distributed point cloud and better shape
reconstruction.

shown in Fig. 4.5. This limits the representational expressivity of the
point clouds given the same number of points. The resampling strat-
egy acts as a regularization to enforce a uniformly distributed point
cloud, which leads to better surface reconstruction.

82

4.3 Experiments

Time 0 s 50 s 100 s 150 s 300 s

Sp
he

re

0.502 0.118 0.074 0.058 0.047

C
oa

rs
e

Sh
ap

e

0.136 0.059 0.051 0.048

Figure 4.6: Ablation Study of Different Geometric Initialization under Optimiza-
tion Setting. We compare the reconstructions of SAP initialized from a sphere and the
coarse geometry. The number below each image indicates the Chamfer Distance to GT mesh.

Ablation Study of Geometric Initialization. As mentioned
in Sec. 4.1, it is easy to initialize SAP with a given geometry such
as template shapes or noisy observations. Here we provide further
discussions with some experiments under both optimization and
learning settings of SAP.

From all the results that we have shown so far under the optimiza-
tion setting, we chose to start from a sphere, since we intended to
demonstrate that if our method is able to produce decent 3D recon-
struction even starting from a sphere, we can also faithfully recon-
struct from a coarse or noisy shape since it is a simpler task, and it
should converge faster. In Fig. 4.6, we show a comparison between
initialization from a sphere and coarse shape. As can be observed,
when starting from points and normals sampled from a coarse shape,
our method indeed converges faster. In terms of accuracy, both re-
sults are equivalent, i.e., there is no better local minima attained by
the optimization process.

83

3D Reconstruction with a Differentiable Poisson Solver

Iterations 10K 50K 100K 200K Best

ConvONet [171] 0.082 0.058 0.055 0.050 0.044
Ours 0.041 0.036 0.035 0.034 0.034

Table 4.4: Training Progress. We show the Chamfer distance at different training iter-
ations evaluated in the Shapenet test set with 3K input points ((noise level=0.005). Our
method uses geometric initialization and converges much faster than ConvONet.

Th
in

gi
10

K
D

-F
A

U
ST

σ = 1 σ = 3 σ = 5 σ = 7 GT

Figure 4.7: Ablation Study of the Gaussian Smoothing Parameter σ. Low σ pre-
serves details better but is prone to noise, while high σ results in smooth shapes, but also
leads to the loss of detail.

Why Do We Need a Gaussian? The Gaussian serves as a regular-
izer for the smoothness of the solved implicit function. Not using a
Gaussian is equivalent to using a Gaussian kernel with σ = 0. Fig. 4.7
motivates the use of our sigma parameter.

Why Use a Gaussian in the Spectral Domain? First, the FFT of a
Gaussian remains a Gaussian. Second, convolution of a Gaussian in
the physical domain is equivalent to a dot product with a Gaussian
in the spectral domain and a dot product in the spectral domain is
more efficient than convolution in the physical domain: O(N log N)
vs O(N2), where n is the resolution of a regular grid and N = n3.

84

4.3 Experiments

Ablation Study of the Gaussian Smoothing Parameter σ. We study
the effect of the Gaussian smoothing parameter σ at a resolution of
2563. As visualized in Fig. 4.7, we can obtain faithful reconstructions
given different σ values. Nevertheless, we can notice that lower σ
can preserve details better but also is prone to noise, while high σ
results in smooth shapes but can also lead to the loss of details. In
practice, σ can be chosen according to the noise level of the target
point cloud. In the results depicted above, we choose σ = 3 for SRB
(Fig. 4.3) and D-FAUST dataset (Fig. 4.4) and σ = 5 for Thingi10K
dataset (Fig. 4.2).

4.3.3 Learning-based Reconstruction

To analyze whether our proposed differentiable Poisson solver is also
beneficial for learning-based reconstruction, we evaluate our method
on the single object reconstruction task using noise and outlier-
augmented point clouds from ShapeNet as input to our method. We
investigate the performance for three different noise levels: (a) Gaus-
sian noise with zero mean and standard deviation 0.005, (b) Gaussian
noise with zero mean and standard deviation 0.025, (c) 50% points
have the same noise as in a) and the other 50% points are outliers
uniformly sampled inside the unit cube.

Fig. 4.8 and Table 4.5 show our results. Compared to the baselines,
our method achieves similar or better results on all three metrics.
The results show that, in comparison to directly using Chamfer loss
on point positions and L1 loss on point normals, our DPSR loss can
produce better reconstructions in all settings as it directly supervises
the indicator grid which implicitly determines the surface through
the Poisson equation. SPSR fails when the noise level is high or when
there are outliers in the input point cloud. We achieve significantly
better performances than other representations such as point clouds,
meshes, voxel grids and patches. Moreover, we find that our method
is robust to strong outliers.

85

3D Reconstruction with a Differentiable Poisson Solver

(a)N
oise=0.005

(b)N
oise=0.025

(c)N
oise=0.005,O

utliers=50%

C
ham

fer-L
1

F-Score
N

orm
alC

.C
ham

fer-L
1

F-Score
N

orm
alC

.C
ham

fer-L
1

F-Score
N

orm
alC

.R
untim

e
SPSR

[97]
0.298

0.612
0.772

0.499
0.324

0.604
1.317

0.164
0.636

-
PSG

N
[52]

0.147
0.259

-
0.151

0.247
-

0.736
0.007

-
0.010

s
3D

-R
2N

2
[40]

0.172
0.400

0.715
0.173

0.418
0.710

0.202
0.387

0.709
0.015

s
A

tlasN
et[65]

0.093
0.708

0.855
0.117

0.527
0.821

1.822
0.057

0.609
0.025

s
C

onvO
N

et[171]
0.044

0.942
0.938

0.066
0.849

0.913
0.052

0.916
0.929

0.327
s

O
urs

(w
/o
L

D
PSR)

0.044
0.942

0.935
0.067

0.841
0.907

0.085
0.819

0.903
0.064

s
O

urs
0.034

0.975
0.944

0.054
0.896

0.917
0.038

0.959
0.936

0.064
s

Table
4.5:

3D
R

econstruction
from

P
oint

C
louds

on
ShapeN

et.
Q

uantitative
com

parison
betw

een
our

learning-based
m

ethod
and

baselines
on

the
ShapeN

etdataset(m
ean

over
13

classes).

86

4.3 Experiments
Lo

w
N

oi
se

H
ig

h
N

oi
se

O
ut

lie
rs

Input SPSR [97] 3D-R2N2 [40] AtlasNet [65] ConvONet [171] Ours GT mesh

Figure 4.8: 3D Reconstruction from Point Clouds on ShapeNet. Comparison of SAP
to baselines on 3 different setups.

87

3D Reconstruction with a Differentiable Poisson Solver

Table 4.5 also reports the runtime for setting (a) for all GPU-
accelerated methods using a single NVIDIA GTX 1080Ti GPU, aver-
aged over all objects of the ShapeNet test set. The baselines [40,52,65]
demonstrate fast inference time but suffer in terms of reconstruc-
tion quality while the neural implicit model [171] attains high qual-
ity reconstructions but suffers from slow inference. In contrast, our
method is able to produce competitive reconstruction results at rea-
sonably fast inference time. In addition, since ConvONet and our
method share a similar reconstruction pipeline, we provide a more
detailed breakdown of the runtime at a resolution of 1283 and 2563

voxels in Table 4.6. We use the default setup from ConvONet, except
that we use the Marching Cubes implementation from [218] for both
ConvONet and ours for consistency. As we can see from Table 4.6,
the difference in terms of point encoding and Marching Cubes is
marginal, but we gain more than 20× speed-up over ConvONet in
evaluating the indicator grid. In total, we are roughly 5× and 8×
faster regarding the total inference time at a resolution of 1283 and
2563 voxels, respectively.

4.3.4 Ablation Study for Learning-based Setting

we first investigate different architecture choices in the context of
learning-based reconstruction. We conduct our ablation experiments
on ShapeNet for the third setup (most challenging).

Number of Offsets. From Table 4.6 (left) we notice that predicting
more offsets per input point leads to better performance. This can be
explained by the fact that with more points near the object surface,
geometric details can be better preserved.

Point Cloud Encoder. In Table 4.6 (right), we compare two different
point encoder architectures proposed in [171]: a 2D encoder using 3
canonical planes at a resolution of 642 pixels and a 3D encoder using
a feature volume with a resolution of 323 voxels. We find that the 3D

88

4.3 Experiments

1283 2563

Enc. Grid MC Total Enc. Grid MC Total
ConvONet 0.010 0.280 0.037 0.327 0.010 3.798 0.299 4.107
Ours 0.013 0.012 0.039 0.064 0.019 0.140 0.374 0.533

Chamfer F-Score NormalC

Offset 1× 0.041 0.952 0.928
Offset 3× 0.039 0.958 0.934
Offset 5× 0.039 0.957 0.934
Offset 7× 0.038 0.959 0.936
2D Enc. 0.043 0.939 0.928
3D Enc. 0.038 0.959 0.936

Table 4.6: Ablation Study for Learning-based Setting. Top: Runtime breakdown (en-
coding, grid evaluation, marching cubes) for ConvONet vs. ours in seconds. Bottom: Abla-
tion over the number of offsets and 2D vs. 3D encoders.

encoder works best in this setting and hypothesize that this is due to
the representational alignment with the 3D indicator grid.

How SAP Handles Noise and Outlier.

Here we visualize how our trained models handle noise and outliers
during inference. For Gaussian noises present in input point clouds,
we can see from the top row of Fig. 4.9 that, compared to the input
point cloud, the updated SAP points are densified because we pre-
dict k = 7 offsets per input point. More importantly, all SAP points
are located roughly on the surface, which leads to enhanced recon-
struction quality.

We also visualize how SAP handles outlier points at the bottom row
of Fig. 4.9. The arrows’ length represents the magnitude of the pre-
dicted normals. There are two interesting observations: a) A large
amount of outlier points in the input are moved near to the surface.
b) Some outlier points still remain outliers. For these points, the net-
work learns to predict normals with a very small magnitude/norm

89

3D Reconstruction with a Differentiable Poisson Solver

Input Ours - point clouds Ours - mesh GT mesh

Figure 4.9: Visualization of SAP Handling Noise and Outliers. The length of ar-
rows represents the magnitude of normals. SAP point clouds are downsampled for better
visualization.

as shown in the zoom-in view (we do not normalize the point nor-
mals to unit length). In this way, those outlier points are “muted”
when being passed to the DPSR layer such that they do not con-
tribute to the final reconstruction.

4.4 Conclusion and Discussion

We introduce Shape-As-Points, a novel shape representation which
is lightweight, interpretable and produces watertight meshes effi-
ciently. We demonstrate its effectiveness for 3D surface reconstruc-
tion from unoriented point clouds in both optimization-based and
learning-based settings.

Limitations and Future Works. First, our method is currently lim-
ited to small scenes due to the cubic memory requirements with

90

4.4 Conclusion and Discussion

respect to the indicator grid resolution. We believe that process-
ing scenes in a sliding-window manner and space-adaptive data
structures (e.g., octrees) will enable extending our method to larger
scenes. Moreover, we currently only consider input as point clouds.
A natural next step is to benefit the task of multi-view reconstruction
with our DPSR. One recent attempt [125] has shown our DPSR can
indeed significantly speed up the reconstruction process of human
body from only RGB images.

91

3D Reconstruction with a Differentiable Poisson Solver

92

C H A P T E R 5
SLAM with Scalable Scene
Representations

In Chapter 3, we showed the aptitude of neural implicit represen-
tations for detailed 3D reconstructions. Building on this, Chap-
ter 4 optimized inference speed via the integration of a differentiable
solver. The models we discussed so far are confined to reconstruct-
ing shapes solely from point clouds. To bridge this gap and cater
to real-world applications—where typically only RGB-D sequences
serve as input—we introduce in this chapter a dense SLAM system.
This system pioneers a hierarchical scene representation, incorpo-
rating multi-level local information, and is designed for joint cam-
era tracking and 3D reconstruction, especially of expansive indoor
scenes.

93

SLAM with Scalable Scene Representations

5.1 Introduction

Dense visual Simultaneous Localization and Mapping (SLAM) is a
fundamental problem in 3D computer vision with many applications
in autonomous driving, indoor robotics, mixed reality, etc. In order
to make a SLAM system truly useful for real-world applications, the
following properties are essential. First, we desire the SLAM system
to be real-time. Next, the system should have the ability to make
reasonable predictions for regions without observations. Moreover,
the system should be able to scale up to large scenes. Last but not
least, it is crucial to be robust to noisy or missing observations.

In the scope of real-time dense visual SLAM system, many methods
have been introduced for RGB-D cameras in the past years. Tradi-
tional dense visual SLAM systems [156, 188, 233, 234] fulfil the real-
time requirement and can be used in large-scale scenes, but they are
unable to make plausible geometry estimation for unobserved re-
gions. On the other hand, learning-based SLAM approaches [9, 43,
201,275] attain a certain level of predictive power since they typically
train on task-specific datasets. Moreover, learning-based methods
tend to better deal with noises and outliers. However, these meth-
ods are typically only working in small scenes with multiple objects.
Recently, Sucar et al. [200] applied a neural implicit representation in
the real-time dense SLAM system (called iMAP), and they showed
decent tracking and mapping results for room-sized datasets. Never-
theless, when scaling up to larger scenes, e.g., an apartment consist-
ing of multiple rooms, significant performance drops are observed in
both the dense reconstruction and camera tracking accuracy.

The key limiting factor of iMAP [200] stems from its use of a single
multi-layer perceptron (MLP) to represent the entire scene, which
can only be updated globally with every new, potentially partial
RGB-D observations. In contrast, our work in Chapter 3 and some
other recent efforts [203, 270] demonstrate that establishing grid-
based features can help to preserve geometric details and enable re-

94

5.1 Introduction

Figure 5.1: Multi-room Apartment 3D Reconstruction using NICE-SLAM. A hier-
archical feature grid jointly encodes geometry and color information and is used for both
mapping and tracking. We depict the final mesh and camera tracking trajectory.

constructing complex scenes, but these are offline methods without
real-time capability.

In this chapter, we seek to combine the strengths of hierarchical scene
representations with those of neural implicit representations for the
task of dense RGB-D SLAM. To this end, we introduce NICE-SLAM, a
dense RGB-D SLAM system that can be applied to large-scale scenes
while preserving the predictive ability. Our key idea is to represent
the scene geometry and appearance with hierarchical feature grids
and incorporate the inductive biases of neural implicit decoders pre-
trained at different spatial resolutions. With the rendered depth and
color images from the occupancy and color decoder outputs, we can
optimize the features grids only within the viewing frustum by min-
imizing the re-rendering losses. We perform extensive evaluations
on a wide variety of indoor RGB-D sequences and demonstrate the

95

SLAM with Scalable Scene Representations

scalability and predictive ability of our method. Overall, we make
the following contributions in this chapter:

• We present NICE-SLAM, a dense RGB-D SLAM system that is real-time
capable, scalable, predictive, and robust to various challenging scenarios.

• The core of NICE-SLAM is a hierarchical, grid-based neural implicit en-
coding. In contrast to global neural scene encodings, this representa-
tion allows for local updates, which is a prerequisite for large-scale ap-
proaches.

• We conduct extensive evaluations on various datasets which demon-
strate competitive performance in both mapping and tracking.

5.2 Related Work

5.2.1 Dense Visual SLAM

Most modern methods for visual SLAM follow the overall architec-
ture introduced in the seminal work by Klein et al. [104], decom-
posing the task into mapping and tracking. The map representa-
tions can be generally divided into two categories: view-centric and
world-centric. The first anchors 3D geometry to specific keyframes,
often represented as depth maps in the dense setting. One of the
early examples of this category was DTAM [156]. Because of its
simplicity, DTAM has been widely adapted in many recent learning-
based SLAM systems. For example, [216,277] regress both depth and
pose updates. DeepV2D [212] similarly alternates between regress-
ing depth and pose estimation but uses test-time optimization. BA-
Net [207] and DeepFactors [43] simplify the optimization problem
by using a set of basis depth maps. There are also some methods,
e.g. CodeSLAM [9], SceneCode [275] and NodeSLAM [201], which
optimize a latent representation that decodes into the keyframe or
object depth maps. DROID-SLAM [213] uses regressed optical flow
to define geometrical residuals for its refinement. TANDEM [106]

96

5.2 Related Work

combines multi-view stereo with DSO [50] for a real-time dense
SLAM system. On the other hand, the world-centric map representa-
tion anchors the 3D geometry in uniform world coordinates, and can
be further divided into surfels [188, 234] and voxel grids, typically
storing occupancies or TSDF values [42]. Voxel grids have been used
extensively in RGB-D SLAM, e.g. KinectFusion [155] among other
works [14, 45, 94, 163].

In our proposed pipeline we also adopt the voxel-grid representa-
tion. In contrast to previous SLAM approaches, we store implicit
latent codes of the geometry and directly optimize them during map-
ping. This richer representation allows us to achieve more accurate
geometry at lower grid resolutions.

5.2.2 SLAM with Neural Implicit Representations

Recently, neural implicit representations demonstrated promising re-
sults for object geometry representation [29,130,144,161,165,166,170,
185,225,249,255,256], scene completion [20,90,171], novel view syn-
thesis [141, 149, 177, 268] and also generative modelling [22, 158, 159,
190]. A few recent papers [5, 12, 37, 153, 203, 231, 252] attempt to pre-
dict scene-level geometry with RGB-(D) inputs, but they all assume
given camera poses. Another set of works [123, 230, 259] tackle the
problem of camera pose optimization, but they need a rather long
optimization process, which is not suitable for real-time applications.

The most related work to our method in this chapter is iMAP [200].
Given an RGB-D sequence, they introduce a real-time dense SLAM
system that uses a single multi-layer perceptron (MLP) to compactly
represent the entire scene. Nevertheless, due to the limited model
capacity of a single MLP, iMAP fails to produce detailed scene ge-
ometry and accurate camera tracking, especially for larger scenes. In
contrast, we provide a scalable solution akin to iMAP, that combines
learnable latent embeddings with a pretrained continuous implicit
decoder. In this way, our method can reconstruct complex geometry

97

SLAM with Scalable Scene Representations

and predict detailed textures for larger indoor scenes, while main-
taining much less computation and guaranteeing faster convergence.
Notably, the works [90, 171] also combine traditional grid structures
with learned feature representations for scalability, but neither of
them is real-time capable. Moreover, DI-Fusion [82] also optimizes
a feature grid given an RGB-D sequence, but their reconstruction of-
ten contain holes and their camera tracking is not robust for the pure
surface rendering loss.

5.3 Method

We provide an overview of our method in Fig. 5.2. We represent the
scene geometry and appearance using four feature grids and their
corresponding decoders (Sec. 5.3.1). We trace the viewing rays for
every pixel using the estimated camera calibration. By sampling
points along a viewing ray and querying the network, we can render
both depth and color values of this ray (Sec. 5.3.2). By minimizing
the re-rendering losses for depth and color, we are able to optimize
both the camera pose and the scene geometry in an alternating fash-
ion (Sec. 5.3.3). We also discuss how to initialize the feature grids
(Sec. 5.3.4) and select keyframes (Sec. 5.3.5).

5.3.1 Hierarchical Scene Representation

We now introduce our hierarchical scene representation that com-
bines multi-level grid features with pre-trained decoders for occu-
pancy predictions. The geometry is encoded into three feature grids
φl

θ and their corresponding MLP decoders f l , where l ∈ {0, 1, 2} is
referred to coarse, mid and fine-level scene details. In addition, we
also have a single feature grid ψω and decoder gω to model the scene
appearance. Here θ and ω indicate the optimizable parameters for
geometry and color, i.e., the features in the grid and the weights in
the color decoder.

98

5.3 Method

In
pu
t	R
GB
-D
	S
tr
ea
m

In
pu
t	R
GB

Ge
ne
ra
te
d	
RG
B

In
pu
t	D
ep
th

Ge
ne
ra
te
d	
De
pt
h

Re
co
ns
tr
uc
tio
n	
Lo
ss

Ph
ot
om

et
ri
c	L
os
s

De
pt
h	
Lo
ss

Features

Interpolation

3D
 Location

O
ccupancy

P
robability

Features

3D
 Location

O
ccupancy

P
robability

3D
 Location

3D
 Location

C
olor P
rediction

Features

Features
Feature C
oncatenation

O
ccupancy

P
robability

Features

Interpolation

3D
 Location

O
ccupancy

P
robability

Features

3D
 Location

O
ccupancy

P
robability

3D
 Location

3D
 Location

C
olor P
rediction

Features

Features
Feature C
oncatenation

O
ccupancy

P
robability

Features

Interpolation

3D
 Location

O
ccupancy

P
robability

Features

3D
 Location

O
ccupancy

P
robability

3D
 Location

3D
 Location

C
olor P
rediction

Features

Features
Feature C
oncatenation

O
ccupancy

P
robability

H
ie
ra
rc
hi
ca
l	F
ea
tu
re
	G
ri
d

C
oarse Level

Trilinear

Interpolation

3D
 Location

C
olor Prediction

S
cene P
rediction M
odule

S
cene M
apping M
odule

M
iddle Level

C
olor Level

Feature

C
oarse O
ccupancy

Fine Level

Fine-level O
ccupancy

C
oarse Level

Trilinear

Interpolation

3D
 Location

C
olor Prediction

S
cene P
rediction M
odule

S
cene M
apping M
odule

M
iddle Level

C
olor Level

Feature

C
oarse O
ccupancy

Fine Level

Fine-level O
ccupancy

C
oarse Level

Trilinear

Interpolation

3D
 Location

C
olor Prediction

S
cene P
rediction M
odule

S
cene M
apping M
odule

M
iddle Level

C
olor Level

Feature

C
oarse O
ccupancy

Fine Level

Fine-level O
ccupancy

M
id
	L
ev
el

C
oarse Level

Trilinear

Interpolation

3D
 Location

C
olor Prediction

S
cene P
rediction M
odule

S
cene M
apping M
odule

M
iddle Level

C
olor Level

Feature

C
oarse O
ccupancy

Fine Level

Fine-level O
ccupancy

Co
lo
r	L
ev
el

Fi
ne
	L
ev
el

Co
ar
se
	L
ev
el

Di
ffe
re
nt
ia
bl
e	
Re
nd
er
er

Ca
m
er
a	
Po
se

Fi
ne
-le
ve
l

Oc
cu
pa
nc
y

Co
lo
r

Pr
ed
ic
tio
n

Co
ar
se
-le
ve
l	

Oc
cu
pa
nc
y

Ra
y	
–>
	P
oi
nt
	S
am

pl
er

N
eu
ra
l	N
et
w
or
k

M
et
ho
d	
Es
tim

at
e	
/	
Ou
tp
ut

Lo
ss
	F
un
ct
io
n

Di
ffe
re
nt
ia
bl
e	
Re
nd
er
er

C
oarse Level

Trilinear

Interpolation

3D
 Location

C
olor Prediction

S
cene P
rediction M
odule

S
cene M
apping M
odule

M
iddle Level

C
olor Level

Feature

C
oarse O
ccupancy

Fine Level

Fine-level O
ccupancy

Tr
i-l
in
ea
r

In
te
rp
ol
at
io
n

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ilin

ea
r

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ilin

ea
r

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

Sc
en

e
P

re
di

ct
io

n
M

od
ul

e

Sc
en

e
M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

Vo
lu
m
e	

Re
nd
er
in
g

Z <latexit sha1_base64="MZPzi4OB8GZkiJWEbQpsQfa5Fko=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaGxX635dX8OskqCgtSgQLNf/eoNYpYqrpFJam038BMMM2pQMMlnlV5qeULZhI5411FNFbdhNr91Rs6cMiDD2LjSSObq74mMKmunKnKdiuLYLnu5+J/XTXF4HWZCJylyzRaLhqkkGJP8cTIQhjOUU0coM8LdStiYGsrQxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8ecp78d69j0VryStmjuEPvM8fIqiOSQ==</latexit><latexit sha1_base64="MZPzi4OB8GZkiJWEbQpsQfa5Fko=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaGxX635dX8OskqCgtSgQLNf/eoNYpYqrpFJam038BMMM2pQMMlnlV5qeULZhI5411FNFbdhNr91Rs6cMiDD2LjSSObq74mMKmunKnKdiuLYLnu5+J/XTXF4HWZCJylyzRaLhqkkGJP8cTIQhjOUU0coM8LdStiYGsrQxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8ecp78d69j0VryStmjuEPvM8fIqiOSQ==</latexit><latexit sha1_base64="MZPzi4OB8GZkiJWEbQpsQfa5Fko=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaGxX635dX8OskqCgtSgQLNf/eoNYpYqrpFJam038BMMM2pQMMlnlV5qeULZhI5411FNFbdhNr91Rs6cMiDD2LjSSObq74mMKmunKnKdiuLYLnu5+J/XTXF4HWZCJylyzRaLhqkkGJP8cTIQhjOUU0coM8LdStiYGsrQxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8ecp78d69j0VryStmjuEPvM8fIqiOSQ==</latexit><latexit sha1_base64="MZPzi4OB8GZkiJWEbQpsQfa5Fko=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJlmyu3fszgnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelEhh0fe/vdLa+sbmVnm7srO7t39QPTxq2zg1jLdYLGPTiajlUmjeQoGSdxLDqYokf4wmt7n/+MSNFbF+wGnCQ0VHWgwFo5hLPaGxX635dX8OskqCgtSgQLNf/eoNYpYqrpFJam038BMMM2pQMMlnlV5qeULZhI5411FNFbdhNr91Rs6cMiDD2LjSSObq74mMKmunKnKdiuLYLnu5+J/XTXF4HWZCJylyzRaLhqkkGJP8cTIQhjOUU0coM8LdStiYGsrQxVNxIQTLL6+S9kU98OvB/WWtcVPEUYYTOIVzCOAKGnAHTWgBgzE8wyu8ecp78d69j0VryStmjuEPvM8fIqiOSQ==</latexit>

C
oa

rs
e

Le
ve

l

Tr
ili

ne
ar

In
te

rp
ol

at
io

n

3D
 L

oc
at

io
n

C
ol

or
 P

re
di

ct
io

n

S
ce

ne
 P

re
di

ct
io

n
M

od
ul

e

S
ce

ne
 M

ap
pi

ng
 M

od
ul

e

M
id

dl
e

Le
ve

l

C
ol

or
 L

ev
el

Fe
at

ur
e

C
oa

rs
e

O
cc

up
an

cy

Fi
ne

 L
ev

el

Fi
ne

-le
ve

l O
cc

up
an

cy

Po
si
tio
na
l	E
nc
od
in
g

N
IC
E-
SL
AM

Ge
om

et
ry
	E
nc
od
in
g

Co
lo
r	E
nc
od
in
g

+

M
in
im
iz
e

Fi
gu

re
5.

2:
Sy

st
em

O
ve

rv
ie

w
.

O
ur

m
et

ho
d

ta
ke

s
an

R
G

B-
D

im
ag

e
st

re
am

as
in

pu
t

an
d

ou
tp

ut
s

bo
th

th
e

ca
m

er
a

po
se

as
w

el
la

s
a

le
ar

ne
d

sc
en

e
re

pr
es

en
ta

tio
n

in
fo

rm
of

a
hi

er
ar

ch
ic

al
fe

at
ur

e
gr

id
.F

ro
m

ri
gh

t-
to

-le
ft,

ou
r

pi
pe

lin
e

ca
n

be
in

te
rp

re
te

d
as

a
ge

ne
ra

tiv
em

od
el

w
hi

ch
re

nd
er

sd
ep

th
an

d
co

lo
ri

m
ag

es
fr

om
a

gi
ve

n
sc

en
er

ep
re

se
nt

at
io

n
an

d
ca

m
er

a
po

se
.A

tt
es

tt
im

ew
e

es
tim

at
eb

ot
h

th
es

ce
ne

re
pr

es
en

ta
tio

n
an

d
ca

m
er

a
po

se
by

so
lv

in
g

th
ei

nv
er

se
pr

ob
le

m
vi

a
ba

ck
pr

op
ag

at
in

g
th

ei
m

ag
ea

nd
de

pt
h

re
co

ns
tr

uc
tio

n
lo

ss
th

ro
ug

h
a

di
ffe

re
nt

ia
bl

e
re

nd
er

er
(le

ft-
to

-r
ig

ht
).

Bo
th

en
tit

ie
s

ar
e

es
tim

at
ed

w
ith

in
an

al
te

rn
at

in
g

op
tim

iz
a-

tio
n:

M
ap

pi
ng

:T
he

ba
ck

pr
op

ag
at

io
n

on
ly

up
da

te
s

th
e

hi
er

ar
ch

ic
al

sc
en

e
re

pr
es

en
ta

tio
n;

Tr
ac

ki
ng

:T
he

ba
ck

pr
op

ag
at

io
n

on
ly

up
da

te
s

th
e

ca
m

er
a

po
se

.F
or

be
tt

er
re

ad
ab

ili
ty

w
e

jo
in

ed
th

e
fin

e-
sc

al
e

gr
id

fo
r

ge
om

et
ry

en
co

di
ng

w
ith

th
e

eq
ua

lly
-s

iz
ed

co
lo

r
gr

id
an

d
sh

ow
th

em
as

on
e

gr
id

w
ith

tw
o

at
tr

ib
ut

es
(r

ed
an

d
or

an
ge

).

99

SLAM with Scalable Scene Representations

Mid-&Fine-level Geometric Representation. The observed scene
geometry is represented in the mid- and fine-level feature grids. In
the reconstruction process we use these two grids in a coarse-to-fine
approach where the geometry is first reconstructed by optimizing
the mid-level feature grid, followed by a refinement using the fine-
level. In the implementation we use voxel grids with side lengths
of 32cm and 16cm respectively, except for TUM RGB-D [199] we use
16cm and 8cm. For the mid-level, the features are directly decoded
into occupancy values using the associated MLP f 1. For any point
p ∈ R3, we get the occupancy as

o1
p = f 1(p, φ1

θ(p)), (5.1)

where φ1
θ(p) denotes that the feature grid is tri-linearly interpolated

at the point p. The relatively low-resolution allow us to efficiently
optimize the grid features to fit the observations. To capture smaller
high-frequency details in the scene geometry we add in the fine-level
features in a residual manner. In particular, the fine-level feature de-
coder takes as input both the corresponding mid-level feature and
the fine-level feature and outputs an offset from the mid-level occu-
pancy, i.e.,

∆o1
p = f 2(p, φ1

θ(p), φ2
θ(p)), (5.2)

where the final occupancy for a point is given by

op = o1
p + ∆o1

p. (5.3)

Note that we fix the pre-trained decoders f 1 and f 2, and only opti-
mize the feature grids φ1

θ and φ2
θ throughout the entire optimization

process. We demonstrate that this helps to stabilize the optimization
and learn consistent geometry.

Coarse-level Geometric Representation. The coarse-level feature
grid aims to capture the high-level geometry of the scene (e.g., walls,
floor, etc), and is optimized independently from the mid- and fine-
level. The goal of the coarse-grid is to be able to predict approxi-
mate occupancy values outside of the observed geometry (which is

100

5.3 Method

encoded in the mid/fine-levels), even when each coarse voxel has
only been partially observed. For this reason we use a very low res-
olution, with a side-length of 2m in the implementation. Similarly
to the mid-level grid, we decode directly into occupancy values by
interpolating the features and passing through the MLP f 0, i.e.,

o0
p = f 0(p, φ0

θ(p)). (5.4)

During tracking, the coarse-level occupancy values are only used for
predicting previously unobserved parts. This forecasted geometry al-
lows us to track even when a large portion of the current image is
previously unseen.

Why is the Mid-level Output not a Residual to the Coarse-level
Output? The coarse grid has a significantly larger voxel size (side of
> 1 meter) than the mid and fine levels, so updating the coarse-level
feature would affect a large area. To ensure small local updates for
efficiency, we disconnect coarse level from mid and fine levels, and
only use coarse level for prediction.

Pre-training Feature Decoders. In our framework we use three dif-
ferent fixed MLPs to decode the grid features into occupancy val-
ues. The coarse and mid-level decoders are pre-trained as part of our
3D model in ConvONet [171] (Chapter 3), which consists of a CNN
encoder and an MLP decoder. We train both the encoder/decoder
using the binary cross-entropy loss between the predicted and the
ground-truth value, same as in [171]. After training, we only use
the decoder MLP, as we will directly optimize the features to fit the
observations in our reconstruction pipeline. In this way the pre-
trained decoder can leverage resolution-specific priors learned from
the training set, when decoding our optimized features.

The same strategy is used to pre-train the fine-level decoder, except
that we simply concatenate the feature φ1

θ(p) from the mid-level to-
gether with the fine-level feature φ2

θ(p) before inputting to the de-
coder.

101

SLAM with Scalable Scene Representations

Color Representation. While we are mainly interested in the scene
geometry, we also encode the color information allowing us to ren-
der RGB images which provides additional signals for tracking. To
encode the color in the scene, we apply another feature grid ψω and
decoder gω:

cp = gω(p, ψω(p)), (5.5)

where ω indicates learnable parameters during optimization. Differ-
ent from the geometry that has strong prior knowledge, we empiri-
cally found that jointly optimizing the color features ψω and decoder
gω improves the tracking performance (c.f. Table 5.7). Note that, sim-
ilarly to iMAP [200], this can lead to forgetting problems and the
color is only consistent locally. If we want to visualize the color for
the entire scene, it can be optimized globally as a post-processing
step.

Network Design. For all MLP decoders, we use a hidden feature di-
mension of 32 and 5 fully-connected blocks [161, 171]. Except for the
coarse-level geometric representation, we apply a learnable Gaus-
sian positional encoding [200,205] to p before input to MLP decoders.
We observe this allows the discovery of high-frequency details for
both geometry and appearance.

5.3.2 Depth and Color Rendering

Inspired by the recent success of volume rendering in NeRF [149],
we propose to also use a differentiable rendering process which inte-
grates the predicted occupancy and colors from our scene represen-
tation in Sec. 5.3.1.

Given camera intrinsic parameters and current camera pose, we can
calculate the viewing direction r of a pixel coordinate. We first sam-
ple along this ray Nstrat points for stratified sampling, and also uni-
formly sample Nimp points near to the depth1. In total we sam-

1We empirically define the sampling interval as ±0.05D, where D is the depth value of the
current ray.

102

5.3 Method

ple N = Nstrat + Nimp points for each ray. More formally, let
pi = o + dir, i ∈ {1, · · · , N} denote the sampling points on the ray r
given the camera origin o, and di corresponds to the depth value of
pi along this ray. For every point pi, we can calculate their coarse-
level occupancy probability o0

pi
, fine-level occupancy probability opi ,

and color value cpi using Eq. (5.4), Eq. (5.3), and Eq. (5.5). Simi-
lar to [165], we model the ray termination probability at point pi as
wc

i = o0
pi ∏i−1

j=1(1− o0
pj
) for coarse level, and w f

i = opi ∏i−1
j=1(1− opj)

for fine level.

Finally for each ray, the depth at both coarse and fine level, and color
can be rendered as:

D̂c =
N

∑
i=1

wc
i di, D̂ f =

N

∑
i=1

w f
i di, Î =

N

∑
i=1

w f
i ci. (5.6)

Moreover, we also calculate depth variances along the ray:

D̂c
var =

N

∑
i=1

wc
i (D̂c − di)

2 D̂ f
var =

N

∑
i=1

w f
i (D̂ f − di)

2. (5.7)

5.3.3 Mapping and Tracking

In this section, we provide details on the optimization of the scene
geometry θ and appearance ω parameters of our hierarchical scene
representation, and of the camera poses.

Mapping. To optimize the scene representation mentioned
in Sec. 5.3.1, we uniformly sample total M pixels from the current
frame and the selected keyframes. Next, we perform optimization in
a staged fashion to minimize the geometric and photometric losses.

The geometric loss is simply an L1 loss between the observations and
predicted depths at coarse or fine level:

Ll
g =

1
M

M

∑
m=1

∣∣∣Dm − D̂l
m

∣∣∣, l ∈ {c, f }. (5.8)

103

SLAM with Scalable Scene Representations

The photometric loss is also an L1 loss between the rendered and
observed color values for M sampled pixel:

Lp =
1
M

M

∑
m=1

∣∣Im − Îm
∣∣ . (5.9)

At the first stage, we optimize only the mid-level feature grid φ1
θ us-

ing the geometric loss L f
g in Eq. (5.8). Next, we jointly optimize both

the mid and fine-level φ1
θ , φ2

θ features with the same fine-level depth

loss L f
g . Finally, we conduct a local bundle adjustment (BA) to jointly

optimize feature grids at all levels, the color decoder, as well as the
camera extrinsic parameters {Ri, ti} of K selected keyframes:

min
θ,ω,{Ri ,ti}

(Lc
g + L f

g + λpLp) , (5.10)

where λp is the loss weighting factor.

This multi-stage optimization scheme leads to better convergence as
the higher-resolution appearance and fine-level features can rely on
the already refined geometry coming from mid-level feature grid.

Note that we parallelize our system in three threads to speed up the
optimization process: one thread for coarse-level mapping, one for
mid-&fine-level geometric and color optimization, and last one for
camera tracking.

Camera Tracking. In addition to optimizing the scene representa-
tion, we also run in parallel camera tracking to optimize the camera
poses of the current frame, i.e., rotation and translation {R, t}. To
this end, we sample Mt pixels in the current frame and apply the
same photometric loss in Eq. (5.9) but use a modified geometric loss:

Lg var =
1

Mt

Mt

∑
m=1

∣∣Dm − D̂c
m
∣∣

√
D̂c

var

+

∣∣∣Dm − D̂ f
m

∣∣∣
√

D̂ f
var

. (5.11)

The modified loss down-weights less certain regions in the recon-
structed geometry [200, 254], e.g., object edges. The camera tracking

104

5.3 Method

is finally formulated as the following minimization problem:

min
R,t

(Lg var + λptLp) . (5.12)

The coarse feature grid is able to perform short-range predictions of
the scene geometry. This extrapolated geometry provides a meaning-
ful signal for the tracking as the camera moves into previously un-
observed areas. Making it more robust to sudden frame loss or fast
camera movement. We provide experiments in the ablation study
in Sec. 5.4.4.

Robustness to Dynamic Objects. To make the optimization more
robust to dynamic objects during tracking, we filter pixels with large
depth/color re-rendering loss. In particular, we remove any pixel
from the optimization where the loss Eq. (5.12) is larger than 10× the
median loss value of all pixels in the current frame. Fig. 5.8 shows an
example where a dynamic object is ignored since it is not present in
the rendered RGB and depth image. Note that for this task, we only
optimize the scene representation during the mapping. Jointly opti-
mizing camera parameters and scene representations under dynamic
environments is non-trivial, and we consider it as an interesting fu-
ture direction.

5.3.4 Initialization for Hierarchical Feature Grids

Coarse-level Feature Grid. The coarse-level feature grid is randomly
initialized in all experiments.

Mid-level Feature Grid. The mid-level feature grid is also randomly
initialized in all experiments, except for the result shown in Fig. 5.7,
where it is initialized to free space to better visualize the predictions
from the coarse-level grid. Empirically we find that the random ini-
tialization gives slightly better convergence compared to initializing
from a fixed feature vector corresponding to the free space.

105

SLAM with Scalable Scene Representations

Fine-level Feature Grid. The fine-level feature grid is initialized to
ensure the output of the fine-level decoder f 2 as zero, as it is added in
a residual manner onto the occupancy predicted from the mid-level
features. This guarantees a smooth energy transition in the coarse-
to-fine optimization. During the training of the fine-level decoder
from ConvONet [171], we add additional regularization loss to en-
force that, if the fine-level feature is zero, no matter what the con-
catenated mid-level feature is, the output residual should always be
zero. This regularization allows us to zero-initialize the fine-level
grid at runtime.

5.3.5 Keyframe Selection

Similar to other SLAM systems, we continuously optimize our hier-
archical scene representation with a set of selected keyframes. We
maintain a global keyframe list in the same spirit of iMAP [200],
where we incrementally add new keyframes based on the informa-
tion gain. However, in contrast to iMAP [200], we only include
keyframes which have visual overlap with the current frame when
optimizing the scene geometry. This is possible since we are able to
make local updates to our grid-based representation, and we do not
suffer from the same forgetting problems as [200]. This keyframe se-
lection strategy not only ensures the geometry outside of the current
view remains static, but also results in a very efficient optimization
problem as we only optimize the necessary parameters each time.

In practice, we first randomly sample pixels and back-project the
corresponding depths using the optimized camera pose. Then, we
project the point cloud to every keyframe in the global keyframe list.
From those keyframes that have points projected onto, we randomly
select K − 2 frames. In addition, we also include the most recent
keyframe and the current frame in the scene representation optimiza-
tion, forming a total number of K active frames. Refer to Sec. 5.4.4 for
an ablation study on the keyframe selection strategy.

106

5.3 Method

(a) Interpolation problem. (b) Feature selection.

Figure 5.3: 2D Illustration of Feature Grids. The lattice points correspond to features.
The optimized and fixed features are shown in red and blue respectively.

5.3.6 Frustum Feature Selection

The grid-based representation allows us to only optimize the geom-
etry within the current viewing frustum while keeping the rest of
the scene geometry fixed. However, naive optimization for all vox-
els will affect features even just slightly outside the viewing frustum
because of trilinear interpolation. This is illustrated in Fig. 5.3a. The
rays A and B are viewing rays from the current frame and an active
keyframe, respectively. Including these rays in the optimization will
update the feature at X (marked in the figure) due to trilinear inter-
polation. However, updating this feature will also affect the ray C
coming from an inactive keyframe.

To solve the problem, we propose to only update features fully inside
the current viewing frustum during the optimization, see Fig. 5.3b.
In this way, it will not only preserve the previously reconstructed ge-
ometry, but also significantly reduce the number of parameters dur-
ing optimization.

107

SLAM with Scalable Scene Representations

5.4 Experiments

We evaluate our SLAM framework on a wide variety of datasets,
both real and synthetic, of varying size and complexity. We also
conduct a comprehensive ablation study that supports our design
choices.

5.4.1 Experimental Setup

Datasets. We consider 5 versatile datasets: Replica [198], Scan-
Net [44], TUM RGB-D dataset [199], Co-Fusion dataset [183], as well
as a self-captured large apartment with multiple rooms. We follow
the same pre-processing step for TUM RGB-D as in [214].

Baselines. We compare with TSDF-Fusion [42] with our camera
poses with a voxel grid resolution of 2563 (results of higher reso-
lutions are reported in the supp. material), DI-Fusion [82] using
their official implementation2, as well as our faithful iMAP [200] re-
implementation: iMAP∗. Our re-implementation has a similar per-
formance as the original iMAP in both scene reconstruction and cam-
era tracking.

Metrics. We use both 2D and 3D metrics to evaluate the scene ge-
ometry. For the 2D metric, we evaluate the L1 loss on 1000 ran-
domly sampled depth maps from both reconstructed and ground
truth meshes. For a fair comparison, we apply the bilateral solver [7]
to DI-Fusion [82] and TSDF-Fusion to fill depth holes before calculat-
ing the average L1 loss. For 3D metrics, we follow [200] and consider
Accuracy [cm], Completion [cm], and Completion Ratio [< 5cm %], ex-
cept that we remove unseen regions that are not inside any camera’s
viewing frustum. Regarding the evaluation of camera tracking, we
use ATE RMSE [199]. If not specified otherwise, by default we report
the average results of 5 runs.

2https://github.com/huangjh-pub/di-fusion

108

https://github.com/huangjh-pub/di-fusion

5.4 Experiments

room-2 office-2

iM
A

P
∗

[2
00

]
N

IC
E-

SL
A

M
G

T

Figure 5.4: Reconstruction Results on the Replica Dataset [198]. iMAP∗ refers to
our iMAP re-implementation.

Implementation Details. We run our SLAM system on a desktop
PC with a 3.80GHz Intel i7-10700K CPU and an NVIDIA RTX 3090
GPU. In all our experiments, we use the number of sampling points
on a ray Nstrat = 32 and Nimp = 16, photometric loss weighting
λp = 0.2 and λpt = 0.5. For small-scale synthetic datasets (Replica
and Co-Fusion), we select K = 5 keyframes and sample M = 1000
and Mt = 200 pixels. For large-scale real datasets (ScanNet and our
self-captured scene), we use K = 10, M = 5000, Mt = 1000. As for
the challenging TUM RGB-D dataset, we use K = 10, M = 5000,
Mt = 5000. For our re-implementation iMAP∗, we follow all the
hyperparameters mentioned in [200] except that we set the number
of sampling pixels to 5000 since it leads to better performance in both
reconstruction and tracking.

109

SLAM with Scalable Scene Representations

TSDF-Fusion [42] iMAP∗ [200] DI-Fusion [82] NICE-SLAM

Mem. (MB) ↓ 67.10 1.04 3.78 12.02

Depth L1 ↓ 7.57 7.64 23.33 3.53
Acc. ↓ 1.60 6.95 19.40 2.85
Comp. ↓ 3.49 5.33 10.19 3.00
Comp. Ratio ↑ 86.08 66.60 72.96 89.33

Table 5.1: Reconstruction Results for the Replica Dataset [198] (average over 8
scenes). iMAP∗ is our re-implementation of iMAP. TSDF-Fusion uses camera poses from
NICE-SLAM.

5.4.2 Evaluation of Mapping and Tracking

Evaluation on Replica [198]. To evaluate Replica [198], we use the
same rendered RGB-D sequence provided by the authors of iMAP.
With the hierarchical scene representation, our method is able to re-
construct the geometry precisely within limited iterations. As shown
in Table 5.1 as well as the per-scene results in Table 5.3, NICE-SLAM
significantly outperforms baseline methods on almost all metrics,
while keeping a reasonable memory consumption. Qualitatively, we
can see from Fig. 5.4 that our method produces sharper geometry
and less artifacts.

Evaluation on TUM RGB-D [199]. We also evaluate the camera
tracking performance on the small-scale TUM RGB-D dataset. As
shown in Table 5.2, our method outperforms iMAP and DI-Fusion
even though ours is by design more suitable for large scenes. As can
be noticed, the state-of-the-art approaches for tracking (e.g. BAD-
SLAM [188], ORB-SLAM2 [152]) still outperforms the methods based
on implicit scene representations (iMAP [200] and ours). Neverthe-
less, our method significantly reduces the gap between these two cat-
egories, while retaining the representational advantages of implicit
representations.

Evaluation on ScanNet [44]. We select multiple large scenes from

110

5.4 Experiments

fr1/desk fr2/xyz fr3/office

iMAP [200] 4.9 2.0 5.8
iMAP∗ [200] 7.2 2.1 9.0
DI-Fusion [82] 4.4 2.3 15.6
NICE-SLAM 2.7 1.8 3.0

BAD-SLAM [188] 1.7 1.1 1.7
Kintinuous [233] 3.7 2.9 3.0
ORB-SLAM2 [152] 1.6 0.4 1.0

Table 5.2: Camera Tracking Results on TUM RGB-D [199]. ATE RMSE [cm] (↓)
is used as the evaluation metric. NICE-SLAM reduces the gap between SLAM methods
with neural implicit representations and traditional approaches. We report the best out of 5
runs for all methods in this table. The numbers for iMAP, BAD-SLAM, Kintinuous, and
ORB-SLAM2 are taken from [200].

ScanNet [44] to benchmark the scalability of different methods. For
the geometry shown in Fig. 5.5, we can clearly notice that NICE-
SLAM produces sharper and more detailed geometry over TSDF-
Fusion, DI-Fusion and iMAP∗. In terms of tracking, as can be ob-
served, iMAP∗ and DI-Fusion either completely fail or introduce
large drifting, while our method successfully reconstructs the en-
tire scene. Quantitatively speaking, our tracking results are also sig-
nificantly more accurate than both DI-Fusion and iMAP∗ as shown
in Table 5.4.

Evaluation on a Larger Scene. To evaluate the scalability of our
method we captured a sequence in a large apartment with multiple
rooms. Fig. 5.1 and Fig. 5.6 show the reconstructions obtained using
NICE-SLAM, DI-Fusion [82] and iMAP∗ [200]. For reference, we also
show the 3D reconstruction using the offline tool Redwood [38] in
Open3D [278]. We can see that NICE-SLAM has comparable results
with the offline method, while iMAP∗ and DI-Fusion fail to recon-
struct the full sequence.

111

SLAM with Scalable Scene Representations

r
o
o
m
-
0
r
o
o
m
-
1
r
o
o
m
-
2
o
f
f
i
c
e
-
0
o
f
f
i
c
e
-
1
o
f
f
i
c
e
-
2
o
f
f
i
c
e
-
3
o
f
f
i
c
e
-
4

A
vg.

T
SD

F-Fusion
R

es.=
512

(536.87M
B)

D
epth

L1
[cm

]↓
6.38

5.33
6.84

4.74
4.62

11.32
9.89

6.49
6.95

A
cc.[cm

]↓
1.87

2.48
1.69

1.14
0.96

1.63
2.08

1.74
1.70

C
om

p.[cm
]↓

3.60
3.20

2.85
1.72

2.31
3.66

3.69
3.91

3.12
C

om
p.R

atio
[<

5cm
%

]↑
88.33

89.82
90.38

93.55
90.35

86.74
85.35

86.31
88.85

T
SD

F-Fusion
R

es.=
256

(67.10M
B)

D
epth

L1
[cm

]↓
6.69

5.47
7.47

4.97
5.28

12.30
11.17

7.20
7.57

A
cc.[cm

]↓
1.76

2.11
1.59

1.15
0.97

1.56
1.98

1.66
1.60

C
om

p.[cm
]↓

3.85
3.36

3.33
1.93

2.68
4.17

4.22
4.37

3.49
C

om
p.R

atio
[<

5cm
%

]↑
86.29

88.44
86.63

91.73
87.88

82.95
81.31

83.38
86.08

iM
A

P
∗

[200]
(1.04M

B)

D
epth

L1
[cm

]↓
5.70

4.93
6.94

6.43
7.41

14.23
8.68

6.80
7.64

A
cc.[cm

]↓
5.66

5.31
5.64

7.39
11.89

8.12
5.62

5.98
6.95

C
om

p.[cm
]↓

5.20
5.16

5.04
4.35

5.00
6.33

5.47
6.10

5.33
C

om
p.R

atio
[<

5cm
%

]↑
67.67

66.41
69.27

71.97
71.58

58.31
65.95

61.64
66.60

D
I-Fusion

[82]
(3.78M

B)

D
epth

L1
[cm

]↓
6.66

96.82
36.09

7.36
5.05

13.73
11.41

9.55
23.33

A
cc.[cm

]↓
1.79

49.00
26.17

70.56
1.42

2.11
2.11

2.02
19.40

C
om

p.[cm
]↓

3.57
39.40

17.35
3.58

2.20
4.83

4.71
5.84

10.19
C

om
p.R

atio
[<

5cm
%

]↑
87.77

32.01
45.61

87.17
91.85

80.13
78.94

80.21
72.96

N
IC

E-SLA
M

(12.02M
B)

D
epth

L1
[cm

]↓
2.11

1.68
2.90

1.83
2.46

8.92
5.93

2.38
3.53

A
cc.[cm

]↓
2.73

2.58
2.65

2.26
2.50

3.82
3.50

2.77
2.85

C
om

p.[cm
]↓

2.87
2.47

3.00
2.02

2.36
3.57

3.83
3.84

3.00
C

om
p.R

atio
[<

5cm
%

]↑
90.93

92.80
89.07

94.93
92.61

85.20
82.98

86.14
89.33

Table
5.3:R

econstruction
R

esults
for

the
R

eplica
D

ataset
ofEach

Scene.W
e

provide
results

for
each

scene,an
average

of5
runs.

112

5.4 Experiments

TS
D

F-
Fu

si
on

(w
/

ou
r

po
se

)
iM

A
P
∗

[2
00

]
D

I-
Fu

si
on

[8
2]

N
IC

E-
SL

A
M

Sc
an

N
et

M
es

h

Fi
gu

re
5.

5:
3D

R
ec

on
st

ru
ct

io
n

an
d

Tr
ac

ki
ng

on
Sc

an
N

et
[4

4]
.T

he
bl

ac
k

tr
aj

ec
to

ry
is

fr
om

Sc
an

N
et

[4
4]

,t
he

re
d

tr
aj

ec
to

ry
is

th
e

m
et

ho
ds

’t
ra

ck
in

g
re

su
lt.

W
e

tr
ie

d
va

ri
ou

s
hy

pe
rp

ar
am

et
er

s
fo

r
iM

A
P∗

an
d

pr
es

en
t

th
e

be
st

re
su

lts
w

hi
ch

ar
e

m
os

tly
in

fe
ri

or
.

113

SLAM with Scalable Scene Representations

Scene ID 0000 0059 0106 0169 0181 0207 Avg.

iMAP∗ [200] 55.95 32.06 17.50 70.51 32.10 11.91 36.67
DI-Fusion [82] 62.99 128.00 18.50 75.80 87.88 100.19 78.89
NICE-SLAM 8.64 12.25 8.09 10.28 12.93 5.59 9.63

Table 5.4: Camera Tracking Results on ScanNet [44]. Our approach yields consistently
better results on this dataset. ATE RMSE (↓) is used as the evaluation metric.

5.4.3 Performance Analysis

Besides the evaluation of scene reconstruction and camera tracking
on various datasets, in the following, we also evaluate other charac-
teristics of the proposed pipeline.

Computation Complexity. First, we compare the number of float-
ing point operations (FLOPs) needed for querying color and occu-
pancy/volume density of one 3D point, see Table 5.5. Our method
requires only 1/4 FLOPs of iMAP. It is worth mentioning that FLOPs
in our approach remain the same even for very large scenes. In con-
trast, due to the use of a single MLP in iMAP, the capacity limit of the
MLP might require more parameters, which results in more FLOPs.

Runtime. We also compare in Table 5.5 the runtime for tracking and
mapping using the same number of pixel samples (Mt = 200 for
tracking and M = 1000 for mapping). We can notice that our method
is over 2× and 3× faster than iMAP in tracking and mapping. This
indicates the advantage of using feature grids with shallow MLP de-
coders over a single heavy MLP.

Geometry Forecast and Hole Filling. As illustrated in Fig. 5.7, we
are able to complete unobserved scene regions thanks to the use
of coarse-level scene prior. In contrast, the unseen regions recon-
structed by iMAP∗ are very noisy since no scene prior knowledge is
encoded in iMAP∗.

114

5.4 Experiments

iMAP∗ [200] DI-Fusion [82]

NICE-SLAM Redwood [38]

Figure 5.6: 3D Reconstruction and Tracking on a Multi-room Apartment. The cam-
era tracking trajectory is shown in red. iMAP∗ and DI-Fusion failed to reconstruct the
entire sequence. We also show the result of an offline method [38] for reference.

FLOPs [×103]↓ Tracking [ms]↓ Mapping [ms]↓
iMAP [200] 443.91 101 448
NICE-SLAM 104.16 47 130

Table 5.5: Computation & Runtime. Our scene representation does not only improve
the reconstruction and tracking quality, but is also faster. The runtimes for iMAP are taken
from [200].

Robustness to Dynamic Objects. Here we consider the Co-Fusion
dataset [183] which contains dynamically moving objects. As illus-
trated in Fig. 5.8, our method correctly identifies and ignores pixel

115

SLAM with Scalable Scene Representations

iMAP∗ [200] NICE-SLAM w/o coarse NICE-SLAM

Figure 5.7: Geometry Forecast and Hole Filling. The white-colored area is the region
with observations, and cyan indicates the unobserved but predicted region. Thanks to the use
of coarse-level scene prior, our method has better prediction capability compared to iMAP∗.
This in turn also improves our tracking performance.

Pixel Samples Our RGB Our Depth

Figure 5.8: Robustness to Dynamic Objects. We show the sampled pixels overlaid
on an image with a dynamic object in the center (left), our rendered RGB (middle) and
our rendered depth (right) to illustrate the ability of handling dynamic environments. The
masked pixel samples during tracking are colored in black, while the used ones are shown in
red.

samples falling into the dynamic object during optimization, which
leads to better scene representation modelling (see the rendered RGB
and depths). Furthermore, we also compare with iMAP∗ on the same
sequence for camera tracking. The ATE RMSE scores of ours and
iMAP∗ is 1.6cm and 7.8cm respectively, which clearly demonstrates
our robustness to dynamic objects.

116

5.4 Experiments

iMAP* NICE-SLAM w/o coarse-level NICE-SLAM

w
/o

Fr
am

e
Lo

ss
w

/
Fr

am
e

Lo
ss

Figure 5.9: Robustness to Frame Loss. We show the results at frame 2100 after frame
loss at frame 2000. The black trajectory is the ground truth from ScanNet [44], and the red
trajectory indicates tracking results. The missing frames correspond to the straight line in
the middle.

Frame Loss Robustness.We simulate extreme frame loss on ScanNet
scene0000 00 by skipping 100 frames from frame ID 2001 to 2100. As
visualized in Fig. 5.9, iMAP∗ struggles to recover camera poses and
scene geometry, even given 1500 iterations. In contrast, our NICE-
SLAM is able to recover the camera pose using only 300 iterations.
This is due to the use of coarse-level geometric representation which
improves the prediction capability.

5.4.4 Ablation Study

Hierarchical Architecture. Fig. 5.10 compares our hierarchical archi-
tecture against: a) one feature grid with the same resolution as our

117

SLAM with Scalable Scene Representations

0 50 100 150 200
Iterations

0

2

4

6

8

10
D

ep
th

L
os

s
(c

m
)

Fine-level optimization begins.

Hierarchical
Only High-res
Only Low-res

Figure 5.10: Hierarchical Architecture Ablation. Geometry optimization on a single
depth image on Replica [198] with different architectures. The curves are smoothed for
visualization.

fine-level representation (Only High-res); b) one feature grid with
mid-level resolution (Only Low-res). Our hierarchical architecture
can quickly add geometric details when the fine-level representation
participates in the optimization, which also leads to better conver-
gence. The hierarchical architecture guarantees a good balance be-
tween the quality and real-time capability / memory consumption
(only 12 MB for Replica scenes).

We also conduct another ablation study on the number of levels of
feature grids in Table 5.6. It shows that the 3-level feature grid is a
good balance between the reconstruction quality and computational
efficiency.

Local BA. We verify the effectiveness of local bundle adjustment
on ScanNet [44]. If we do not jointly optimize camera poses for
K keyframes together with the scene representation (w/o Local BA
in Table 5.7), the camera tracking is not only significantly less accu-
rate, but also less robust.

118

5.4 Experiments

Levels 2 3 4

FLOPs [×103] ↓ 58.45 104.16 155.95

Depth L1 [cm] ↓ 1.86 1.87 1.96
Acc. [cm] ↓ 2.87 2.78 3.15
Comp. [cm] ↓ 2.76 2.76 2.40
Comp. Ratio [< 5cm %] ↑ 91.24 91.37 93.60

Table 5.6: Ablation on the Levels of Feature Grids. Reconstruction results on Replica
room-0 with ground truth camera pose.

ATE RMSE (↓) w/o Local BA w/o Lp w/ iMAP keyframes Full

Mean 37.74 32.02 12.10 9.63
Std. 30.97 21.98 3.38 0.62

Table 5.7: Ablation Study on LocalBA, Color Representation, and Keyframe Selec-
tion. We investigate the usefulness of local BA, color representation, as well as our keyframe
selection strategy. We run each scene 5 times and calculate their mean and standard devia-
tion of ATE RMSE (↓). We report the average values over 6 scenes in ScanNet [44].

Color Representation. In Table 5.7 we compare our method without
the photometric loss Lp in Eq. (5.9). It shows that, although our esti-
mated colors are not perfect due to the limited optimization budget
and the lack of sampling points, learning such a color representation
still plays an important role for accurate camera tracking.

Keyframe Selection. We test our method using iMAP’s keyframe se-
lection strategy (w/ iMAP keyframes in Table 5.7) where they select
keyframes from the entire scene. This is necessary for iMAP to pre-
vent their simple MLP from forgetting the previous geometry. Nev-
ertheless, it also leads to slow convergence and inaccurate tracking.

Mapping and Tracking Iterations. We show in Fig. 5.11 how the
number of tracking and mapping iterations affects the tracking per-

119

SLAM with Scalable Scene Representations

10 20 30 40
Tracking Iterations

1.0

1.5

2.0
A

T
E

R
M

SE
(c

m
) 2.05

1.21

0.94

20 40 60 80 100 120
Mapping Iterations

2.0

2.5

3.0

A
T

E
R

M
SE

(c
m

)

3.22

2.05

2.29

Figure 5.11: Ablation on the Tracking Performance. ATE RMSE (cm) is used as the
metric.

formance. We also give ground truth camera pose and evaluate re-
construction with different mapping iterations in Table 5.8.

5.5 Conclusion and Discussion

In this chapter, we presented NICE-SLAM, a dense visual SLAM ap-
proach that combines the advantages of neural implicit representa-
tions with the scalability of a hierarchical grid-based scene represen-
tation. Compared to a scene representation with a single big MLP,
our experiments demonstrate that our representation (tiny MLPs +

120

5.5 Conclusion and Discussion

Mapping Iterations 15 30 60 120 240

Depth L1 [cm] ↓ 2.31 2.03 1.87 1.74 1.59
Acc. [cm] ↓ 2.90 2.84 2.78 2.80 2.78
Comp. [cm] ↓ 3.14 2.91 2.76 2.65 2.50
Comp. Ratio [< 5cm %] ↑ 89.15 90.55 91.37 91.94 92.76

Table 5.8: Ablation on Mapping Iterations. Reconstruction results on Replica room-0
with ground truth camera poses.

multi-res feature grids) not only guarantees fine-detailed mapping
and high tracking accuracy, but also faster speed and much less com-
putation due to the benefit of local scene updates. Besides, our net-
work is able to fill small holes and extrapolate scene geometry into
unobserved regions which in turn stabilizes the camera tracking.

Note that, one concurrent work named Instant-NGP [150] also shows
the benefit of hierarchical feature grids for fast training of neural
fields, which draw much attention and inspire follow-up works in
many research area. This further demonstrates the usefulness of our
proposed representation.

Limitations. The predictive ability of our method is restricted to the
scale of the coarse representation. In addition, our method does not
perform loop closures, which is an interesting future direction. Fi-
nally, although traditional methods lack some of the features, there is
still a performance gap in the learning-based approaches that needs
to be closed.

121

SLAM with Scalable Scene Representations

122

C H A P T E R 6
3D Scene Understanding with
Large Vision Language Models

Building upon our exploration of scene representations for 3D re-
construction from either point clouds or RGB-D sequences in previ-
ous chapters, this chapter delves deeper into the realm of high-level
perception tasks, focusing on 3D scene understanding of the recon-
structed scenes. Contrary to traditional 3D scene understanding ap-
proaches that rely on labeled 3D datasets for supervised training on
a single task, we introduce a zero-shot approach that facilitates task-
agnostic training and supports open-vocabulary queries. Remark-
ably, our model, trained without any labeled 3D data, can effectively
identify objects, materials, affordances, activities, and room types in
complex 3D scenes.

123

3D Scene Understanding with Large Vision Language Models

Zero-shot Semantic Segmentation
“anything soft” - Property “where to sit” - Affordance

“kitchen” – Room Type“made of metal” - MaterialInput 3D Point Cloud

Zero-shot Semantic Segmentation

Figure 6.1: Open-vocabulary 3D Scene Understanding. We propose OpenScene, a
zero-shot approach to 3D scene understanding that co-embeds dense 3D point features with
image pixels and text. The examples above show a 3D scene with surface points colored
by how well they match a user-specified query – yellow is highest, green is middle, blue is
low. Harnessing the power of language-based features, OpenScene answers a wide variety
of example queries, without labeled 3D data.

6.1 Introduction

3D scene understanding stands as a cornerstone in the expansive
field of computer vision. Having a set of posed RGB images together
with 3D mesh or point cloud obtained from the previous chapters,
the goal now becomes inferring the semantics, affordances, func-
tions, physical properties of every 3D point in a scene. For exam-
ple, given the house shown in Fig. 6.1, we would like to predict
which surfaces are part of a fan (semantics), made of metal (mate-
rials), within a kitchen (room types), where a person can sit (affor-
dances), where a person can work (functions), and which surfaces
are soft (physical properties). Answers to these queries can help a
robot interact intelligently with the scene or help a person under-
stand it through interactive query and visualization.

124

6.1 Introduction

Achieving this broad scene-understanding goal is challenging due to
the diversity of possible queries. Traditional 3D scene understanding
systems are trained with supervision from benchmark datasets de-
signed for specific tasks (e.g., 3D semantic segmentation for a closed
set of 20 classes [23, 44]). They are designed to answer one type of
query, but provide little assistance for related queries where train-
ing data are scarce (e.g., segmenting rare objects) or other queries
with no 3D supervision (e.g., estimating material properties). While
traditional methods have made significant strides in addressing spe-
cific tasks, there’s a growing realization that leveraging pre-trained
models like text-image embedding models could fill the gaps left by
conventional approaches.

In this chapter, we investigate how to use pre-trained text-image em-
bedding models (e.g., CLIP [175]) to assist in 3D scene understand-
ing. These models have been trained from large datasets of captioned
images to co-embed visual and language concepts in a shared fea-
ture space. Recent work has shown that these models can be used
to increase the flexibility and generalizability of 2D image semantic
segmentation [61,113,176,246,261,276]. However, nobody has inves-
tigated how to use them to improve the diversity of queries possible
for 3D scene understanding.

We present OpenScene, a simple yet effective zero-shot approach for
open-vocabulary 3D scene understanding. Our key idea is to com-
pute dense features for 3D points that are co-embedded with text
strings and image pixels in the CLIP feature space (Fig. 6.2). To
achieve this, we establish associations between 3D points and pixels
from posed images in the 3D scene, and train a 3D network to em-
bed points using CLIP pixel features as supervision. This approach
brings 3D points in alignment with pixels in the feature space, which
in turn are aligned with text features, and thus enable open vocabu-
lary queries on the 3D points.

Our 3D point embedding algorithm includes both 2D and 3D convo-
lutions. We first back-project the 3D position of the point into every
image and aggregate the features from the associated pixels using

125

3D Scene Understanding with Large Vision Language Models

3D G
eom

etry
CLIP Text Features

(visualize w
ith T-SN

E)
RG

B Im
ages

sit

com
fy

glass
openable

Figure
6.2:

K
ey

Idea.
W

e
co-em

bed
3D

points
w

ith
text

and
im

age
pixels

in
the

C
LIP

feature
space

(visualized
w

ith
T-

SN
E

[217])w
hich

has
structure

learned
from

large
im

age
and

textrepositories.

126

6.1 Introduction

multi-view fusion. Next, we train a sparse 3D convolutional network
to perform feature extraction from only the 3D point cloud geometry
with a loss that minimizes differences to the aggregated pixel fea-
tures. Finally, we ensemble the features produced by the 2D fusion
and the 3D network into a single feature for each 3D point. This hy-
brid 2D-3D feature strategy enables the algorithm to take advantage
of salient patterns in both 2D images and 3D geometry, and thus is
more robust and descriptive than features from either domain alone.

Once we have computed features for every 3D point, we can perform
a variety of 3D scene understanding queries. Since the CLIP model
is trained with natural language captions, it captures concepts be-
yond object class labels, including affordances, materials, attributes,
and functions (Fig. 6.1). For example, computing the similarity of 3D
features with the embedding for “soft” produces the result shown in
the bottom-left image of Fig. 6.1, which highlights couches, beds, and
comfy chairs as the best matches. Since our approach is zero-shot (i.e.
no use of labeled data for the target task), it does not perform as well
as fully-supervised approaches on the limited set of tasks for which
there is sufficient training data in traditional benchmarks (e.g., 3D
semantic segmentation with 20 classes). However, it achieves signif-
icantly stronger performance on other tasks. For example, it beats a
fully-supervised approach on indoor 3D semantic segmentation with
40, 80, or 160 classes. It also performs better than other zero-shot
baselines, and can be used without any retraining on novel datasets
even if they have different label sets. It works for indoor RGBD scans
as well as outdoor driving captures. Our approach, to our knowl-
edge, is the first to integrate text-image embedding models like CLIP
into 3D scene understanding, opening avenues for multifaceted and
complex queries.

Overall, our contributions are summarized as follows:

• We introduce open vocabulary 3D scene understanding tasks where arbi-
trary text queries are used for semantic segmentation, affordance estima-
tion, room type classification, 3D object search, and 3D scene exploration.

127

3D Scene Understanding with Large Vision Language Models

• We propose OpenScene, a zero-shot method for extracting 3D features
from an open vocabulary embedding space with multi-view fusion and
3D convolution.

• We show that the extracted features can be used for 3D semantic seg-
mentation with performance better than fully supervised methods for
rare classes.

6.2 Related Work

Closed-set 3D Scene Understanding. There is a long history of
work on 3D scene understanding for vision and robotics applica-
tions. Most prior work focuses on training models with ground-truth
3D labels [39, 69, 77, 78, 84, 115, 154, 173, 180, 189, 226]. These works
have yielded network architectures and training protocols that have
significantly pushed the boundary of several 3D scene understand-
ing benchmarks, including 3D object classification [243], 3D object
detection and localization [15, 26, 57, 204], 3D semantic and instance
segmentation [8,23,44,79,122], 3D affordance prediction [48,116,223],
and so on. The most closely related work to ours of this type is [182],
since they use the CLIP embedding to pre-train a model for 3D se-
mantic segmentation. However, they only use the text embedding
for point encoder pretraining, and then train the point decoder with
3D GT annotations afterwards. Their focus is on using the CLIP
embedding to achieve better supervised 3D semantic segmentation,
rather than open-vocabulary queries.

Another line of research performs 3D scene understanding experi-
ments with only 2D ground truth supervisions [60, 109, 143, 187, 219,
228]. For example, [60] generates pseudo 3D annotation by backpro-
jecting and fusing the 2D predicted labels, from which they learn the
3D segmentation task. However, their 2D network is trained with

128

6.2 Related Work

ground truth 2D labels. A few works [134, 187] pretrain the 3D seg-
mentation network using point-pixel pairs via contrastive learning
between 2D and 3D features. We also utilize 2D image features as
our pseudo-supervision when training the 3D network and no labels
are needed.

All these approaches have mainly been applied with small prede-
fined labelsets containing common object categories. They do not
work as well when the number of object categories increases, as tail
classes have few training examples. In contrast, we are able to seg-
ment with arbitrary labelsets without any re-training, and we show
strong ability of understanding different contents, ranging from rare
object types to even materials or physical properties, which is impos-
sible for previous methods.

Open-Vocabulary 2D Scene Understanding. The recent advances
of large visual language models [1, 87, 175] have enabled a remark-
able level of robustness in zero-shot 2D scene understanding tasks,
including recognizing long-tail objects in images. However, the
learned embeddings are often at the image level, thus not applicable
for dense prediction tasks requiring pixel-level information. Many
recent efforts [61, 66, 110, 113, 120, 138, 176, 192, 246, 261, 276] attempt
to correlate the dense image features with the embedding from large
language models. In this way, given an image at test time, users can
define arbitrary text labels to classify, detect, or segment the image.

More recently, Ha and Song [68] take a step forward and perform
open-vocabulary partial scene understanding and completion given
a single RGB-D frame as input. This method is limited to small
partial scenes and requires ground truth training data for supervi-
sion. In contrast, in this work, we solely rely on pretrained open-
vocabulary 2D models and perform a series of 3D scene-level under-
standing tasks, without the need for any ground truth training data
in 2D or 3D. Moreover,in the absence of 2D images, our method can
perform 3D-only open-vocabulary scene understanding tasks based
on a 3D point network distilled from an open-vocabulary 2D image
model through 3D fusion.

129

3D Scene Understanding with Large Vision Language Models

Zero-shot Learning for 3D Point Clouds. While there have been a
number of studies on zero-shot learning for 2D images, their appli-
cation to 3D is still recent and scarce. A handful of works [31–34,271]
attempt to address the 3D point classification and generation tasks.
More recently, [128, 147] investigated zero-shot learning for seman-
tic segmentation for 3D point clouds. They train with supervision
of 3D ground truth labels for a predefined set of seen classes and
then evaluate on new unseen classes. However, these methods are
still limited to the closed-set segmentation setting and still require
GT training data for the majority of the 3D dataset. Our method does
not require any labeled 3D data for training, and it handles a broad
range of queries supported by a large language model.

6.3 Method

An overview of our approach is illustrated in Fig. 6.3. We first com-
pute per-pixel features for every image using a model pre-trained
for open-vocabulary 2D semantic segmentation. We then aggregate
the pixel features from multiple views onto every 3D point to form
a per-point fused feature vector Sec. 6.3.1. We next distill a 3D net-
work to reproduce the fused features using only the 3D point cloud
as input Sec. 6.3.2. Next, we ensemble the fused 2D features and dis-
tilled 3D features into a single per-point feature Sec. 6.3.3 and use it
to answer open-vocabulary queries Sec. 6.3.4.

6.3.1 Image Feature Fusion

The first step in our approach is to extract dense per-pixel embed-
dings for each RGB image from a 2D visual-language segmentation
model, and then back-project them onto the 3D surface points of a
scene.

Image Feature Extraction. Given RGB images with a resolution of

130

6.3 Method

𝜙

𝐟!"

𝐟#"

ℰ!"#!

…

Multi-view Feature Fusion

!

!
ℒ

3D Distillation

2D-3D Ensemble

!

“brown chair”
“end table”

“floor rug”
…

Arbitrary text queries

𝐟!"#"

Input Images

Input 3D Geometry

Inference

Figure 6.3: Method Overview. Given a 3D model (mesh or point cloud) and a set of
posed images, we train a 3D network E3D to produce dense features for 3D points f3D with
a distillation loss L to multi-view fused features f2D for projected pixels. We ensemble f2D

and f3D based on cosine similarities to CLIP embeddings for an arbitrary set of queries to
form f2D3D. During inference, we can use the similarity scores between per-point features
and given CLIP features to perform open-vocabulary 3D scene understanding tasks.

H ×W, we can simply compute the per-pixel embeddings from the
(frozen) segmentation model E2D, denoted as Ii ∈ RH×W×C, where C
is the feature dimension, and i is the index spanning the total num-
ber of images. For E2D, we experiment with two pretrained image
segmentation models OpenSeg [61] and LSeg [113].

2D-3D Pairing. Given a 3D surface point p ∈ R3 in the point clouds
P ∈ RM×3 of a scene with M points, we calculate its corresponding
pixel u = (u, v) when the intrinsic matrix Ii and world-to-camera ex-
trinsic matrix Ei of that frame i are provided. We only consider the
pinhole camera model in this chapter so the projection can be repre-
sented as ũ = Ii · Ei · p̃, where ũ and p̃ are the homogeneous co-

131

3D Scene Understanding with Large Vision Language Models

ordinates of u and p, respectively. Note that for indoor datasets like
ScanNet and Matterport3D where the depth images are provided, we
also conduct occlusion tests to guarantee the pixel u are only paired
with a visible surface point p.

Fusing Per-Pixel Features. With the 2D-3D pairing, the correspond-
ing 2D features in frame i for point p can be written as fi = Ii(u) ∈
RC. Now, assume a total number of K views can be associated
with point p, we can then fuse such 2D pixel embeddings to ob-
tain a single feature vector for this point f2D = φ(f1, · · · , fK), where
φ : RK×C 7→ RC is an average pooling operator for multi-view fea-
tures. An ablation study on different fusion strategies are discussed
in supplemental. After repeating the fusion process for each point,
we can build a feature point cloud F2D = {f2D

1 , · · · , f2D
M } ∈ RM×C.

6.3.2 3D Distillation

The feature cloud F2D can be directly used for language-driven 3D
scene understanding when images are present. Nevertheless, such
fused features could lead to noisy segmentation due to potentially
inconsistent 2D predictions. Moreover, some tasks only provide 3D
point clouds or meshes. Therefore, we can distill such 2D visual-
language knowledge into a 3D point network that only takes 3D
point positions as input.

Specifically, given an input point cloud P, we seek to learn an en-
coder that outputs per-point embeddings:

F3D = E3D(P), E3D : RM×3 7→ RM×C (6.1)

where F3D = {f3D
1 , · · · , f3D

M }. To enforce the output of the network
F3D to be consistent with the fused features F2D, we use a cosine sim-
ilarity loss:

L = 1− cos(F2D, F3D) (6.2)

We use MinkowskiNet18A [39] as our 3D backbone E3D, and change
the dimension of outputs to C.

132

6.3 Method

Since the open-vocabulary image embeddings from [61, 113] are co-
embedded with CLIP features, the output of our distilled 3D model
naturally lives in the same embedding space as CLIP. Therefore, even
without any 2D observations, such text-3D co-embeddings F3D allow
3D scene-level understanding given arbitrary text prompts. We show
such results in the ablation study in Sec. 6.4.2.

6.3.3 2D-3D Feature Ensemble

Although one can already perform open-vocabulary queries with the
2D fused features F2D or 3D distilled features F3D, here we introduce
a 2D-3D ensemble method to obtain a hybrid feature to yield better
performance.

The inspiration comes from the observation that 2D fused features
specialize in predicting small objects (e.g. a mug on the table) or
ones with ambiguous geometry (e.g. a painting on the wall), while
3D features yield good predictions for objects with distinctive shapes
(e.g. walls and floors). We aim to combine the best of both.

Our ensemble method leverages a set of text prompts, either pro-
vided at inference or offline (e.g. predefined classes from public
benchmarks like ScanNet, or arbitrary classes defined by users). We
first compute the embeddings for all the text prompts using the
CLIP [175] text encoder E text, denoted as T = {t1, · · · , tN} ∈ RN×C,
where N is the number of text prompts and C the feature dimension.
Next, for each 3D point, we obtain its 2D fused and 3D distilled em-
beddings f2D and f3D (dropping the subscript for simplicity). We can
now correlate text features with these two sets of features via cosine
similarity, respectively:

s2D
n = cos(f2D, tn), s3D

n = cos(f3D, tn) (6.3)

Once having the similarity scores wrt every text prompt tn, we can
use the max value s2D = maxn(s2D

n) and s3D = maxn(s3D
n) among all

N prompts as the ensemble scores for both features. Our final 2D-3D

133

3D Scene Understanding with Large Vision Language Models

ensemble feature f2D3D is simply the feature with the highest ensem-
ble score.

6.3.4 Inference

With any per-point feature described in the previous subsections
(f2D, f3D, or f2D3D) and CLIP features from an arbitrary set of text
prompts, we can estimate their similarities by simply calculating
the cosine similarity score between them. We use this similarity
score for all of our scene understanding tasks. For example, for the
zero-shot 3D semantic segmentation using 2D-3D ensemble features,
the final segmentation for each 3D point is computed point-wise by
argmax n{cos(f2D3D, tn)}.

6.3.5 Implementation Details

Details of 3D Distillation. We implement our pipeline in Py-
Torch [168]. To distill E3D, we use Adam [101] as the optimizer
with an initial learning rate of 1e−4 and train for 100 epochs. For
MinkowskiNet we use a voxel size of 2cm for ScanNet and Matter-
port3D experiments, and 5cm for nuScenes. For indoor datasets, we
input all points of a scene to the 3D backbone to have the full con-
texts, but for the distillation loss (Eq. (6.2)) we only supervise with
20K uniformly sampled point features at every iteration due to the
memory constraints. For nuScenes, we input all Lidar points within
the half-second segments, and only train with point features at the
last time stamp. We use a batch size of 8 for ScanNet and Matter-
port3D with a single NVIDIA A100 (40G). For nuScenes, we use a
batch size of 16 with 4 A100 GPUs. It takes around 24 hours to train,
and 0.1 seconds for inference. Moreover, for all dataset we only take
in the 3D point position as input to the MinkowskiNet during distil-
lation.

134

6.4 Experiments

Details of Feature Fusion. For Matterport3D and nuScenes, we use
all images of each scene for fusion, while for ScanNet, we sample 1
out of every 20 video frames. As for the occlusion test, for dataset like
ScanNet and Matterport3D where the depth map is provided, we do
occlusion test to guarantee that a pixel is only paired with a visible
surface point. For every surface point, we first find its correspond-
ing pixel in an image, and we can obtain the distance between that
pixel and 3D point. The 3D points and pixel are only paired when
the difference between the distance and the depth value of that pixel
is smaller than a threshold σ. The threshold σ is proportional to the
depth value D. We use σ = 0.2D for ScanNet due to the highly noisy
depths and σ = 0.02D for Matterport. For pixels with “invalid” re-
gions of the depth map, we do not project their features to 3D points.

For nuScenes Lidar points, since no depth images are provided, no
occlusion test is conducted, and we only use the synchronized im-
ages and the corresponding Lidar points on the last timestamp of a
0.5 second segment.

Prompt Engineering. Given a set of text prompts, we use a simple
prompt engineering before extract CLIP text features. For each object
class “XX” (except for “other”) we modify the prompts to “a XX in
a scene”, for instance “a chair in a scene”. With such a simple mod-
ification, we observe +2.3 mIoU performance boost with our LSeg
ensemble model for ScanNet evaluation. We apply the trick for all
our benchmark comparison experiments.

6.4 Experiments

We ran a series of experiments to test how well the proposed meth-
ods work for a variety of 3D scene understanding tasks. We start
by evaluating on traditional closed-set 3D semantic segmentation
benchmarks (in order to be able to compare to previous work), and
later demonstrate the more novel and exciting open-vocabulary ap-
plications in the next section.

135

3D Scene Understanding with Large Vision Language Models

mIoU mAcc
Bookshelf Desk Sofa Toilet Mean Bookshelf Desk Sofa Toilet Mean

3DGenZ [147] 6.3 3.3 13.1 8.1 7.7 13.4 5.9 49.6 26.3 23.8
MSeg Voting 47.8 40.3 56.5 68.8 53.4 50.1 67.7 69.8 81.0 67.2
Ours - LSeg 67.1 46.4 60.2 77.5 62.8 85.5 69.5 79.0 90.0 81.0
Ours - OpenSeg 64.1 27.4 49.6 63.7 51.2 73.7 73.4 92.5 95.3 83.7

Table 6.1: Comparison on Zero-shot 3D Semantic Segmentation. We show quan-
titative comparison between our method and the most recent zero-shot 3D segmentation
approach [147] and a multi-view fusion baseline utilizing MSeg [112]. Following [147],
we take 4 classes (bookself, desk, sofa, toilet) out of 20 classes from ScanNet validation set
for evaluation. Unlike [147], which requires training on 16 seen classes, our approach does
not train with any 2D or 3D ground labels on any classes. Still, both of our variants show
significantly better performance in both mIoU and mAcc.

Datasets. To test our method in a variety of settings, we evalu-
ate on three popular public benchmarks: ScanNet [44, 182], Matter-
port3D [23], and nuScenes Lidarseg [15]. These three datasets span
a broad gamut of situations – the first two provide RGBD images
and 3D meshes of indoor scenes, and the last provides Lidar scans of
outdoor scenes. We use all three datasets to compare to alternative
methods. Moreover, Matterport3D is a complex dataset with highly
detailed scenes, and thus provides the opportunity to stress open-
vocabulary queries. Finally, to evaluate 3D scene exploration perfor-
mance, we also conduct an experiment on the 3DSSG dataset [220]
that has annotations in object-level material estimation.

6.4.1 Comparisons

Zero-shot 3D semantic segmentation. We first compare OpenScene
to the most closely related work on zero-shot 3D semantic segmenta-
tion: MSeg [112] Voting and 3DGenz [147]. MSeg Voting is a baseline
method that we introduce, which predicts a semantic segmentation
for each image using MSeg [112] with mapping to the corresponding
label sets. For each 3D point, we perform majority voting of the logits

136

6.4 Experiments

from multi-view images. MSeg supports a unified taxonomy of 194
classes. We use their official image semantic segmentation code1 and
their pretrained MSeg-3m-1080p model. MSeg already provided the
mapping from some of 194 classes to 20 ScanNet classes, so we di-
rectly use the mapping. For Matterport3D, we simply add the map-
ping from “ceiling” in the MSeg labelset. As for nuScenes, we man-
ually define the mapping from MSeg to nuScenes 16 labelsets. How-
ever, for the “construction vehicles”, “traffic cone”, and ’other flat’,
there is no mapping at all, so we set them to unknown.

3DGenZ [147] divides the 20 classes of the ScanNet dataset into 16
seen and 4 unseen classes, and trains a network utilizing the ground
truth supervision on the seen classes to generate features for both
sets.

Following the experimental setup in [147], we report the mIoU and
mAcc values on their 4 unseen classes in Table 6.1. Our results on
those classes is significantly better than [147] (7.7% vs 62.8% mIoU),
even though 3DGenz [147] utilizes ground truth data for 16 seen
classes and ours does not. We also outperform MSeg Voting. In this
case, the difference is mainly because our method (regress CLIP fea-
tures and then classify) naturally models the similarities and differ-
ences between classes, where as the MSeg Voting approach (classify
and then vote) treats every class as equally distinct from all other
classes (a couch and a love seat are just as different as a couch and an
airplane in their model).

Comparison on 3D semantic segmentation benchmarks. In Ta-
ble 6.2 we compare our approach with both fully-supervised and
zero-shot methods on all classes of the nuScenes [15] validation set,
ScanNet [44] validation set, and Matterport3D [23] test set. Again,
we outperform the zero-shot baseline (MSeg Voting) on both mIoU
and mAcc metrics all three datasets. Although we have noticeable
gap to the state-of-the-art fully-supervised approaches, our zero-
shot method is surprisingly competitive with fully-supervised ap-

1https://github.com/mseg-dataset/mseg-semantic

137

https://github.com/mseg-dataset/mseg-semantic

3D Scene Understanding with Large Vision Language Models

ScanNetMatterport3DnuScenes

Input
Fully

supervised
[39]

M
Seg

Voting
O

urs
G

T
Segm

entation

Figure
6.4:

Q
ualitative

com
parisons.

Im
ages

of3D
sem

antic
segm

entation
results

on
public

indoor
and

outdoor
bench-

m
arks.

138

6.4 Experiments

nuScenes ScanNet Matterport

mIoU mAcc mIoU mAcc mIoU mAcc
Fully-supervised methods
TangentConv [210] - - 40.9 - - 46.8
TextureNet [84] - - 54.8 - - 63.0
ScanComplete [46] - - 56.6 - - 44.9
DCM-Net [189] - - 65.8 - - 66.2
Mix3D [154] - - 73.6 - - -
VMNet [78] - - 73.2 - - 67.2
LidarMultiNet [257] 82.0 - - - - -
MinkowskiNet [39] 78.0 83.7 69.0 77.5 54.2 64.6
Zero-shot methods
MSeg Voting 31.0 36.9 45.6 54.4 33.4 39.0
Ours - LSeg 36.7 42.7 54.2 66.6 43.4 53.5
Ours - OpenSeg 42.1 61.8 47.5 70.7 42.6 59.2

Table 6.2: Comparisons on Indoor and Outdoor Benchmarks. We compare our
method with both zero-shot and fully-supervised baselines for semantic segmentation of one
outdoor dataset (nuScenes) and two indoor datasets (ScanNet and Matterport). Note that
our zero-shot method performs worse than SOTA approaches trained on this data, but com-
parable to supervised approaches from a few years ago, and better than the previous SOTA
zero-shot approach. Except for [39], the numbers for fully-supervised methods (in gray) are
taken from previous papers.

proaches from a few years ago [46, 84, 210]. Among all 3 datasets
our approach has the smallest gap (only -11.6 mIoU and -8.0 mAcc)
to the SOTA fully-supervised approach on Matterport3D. We conjec-
ture the reason is that Matterport3D is more diverse, which makes
the fully-supervised training harder.

Visual comparisons of semantic segmentations are shown in Fig. 6.4.
They show that some of the predictions marked wrong in our results
are actually either incorrect or ambiguous ground truth annotations.
For example, in the first row in Fig. 6.4, we successfully segment the

139

3D Scene Understanding with Large Vision Language Models

K = 21 K = 40 K = 80 K = 160

Fully-supervision [39] 64.5 50.8 33.4 18.4
Ours 59.2 50.9 34.6 23.1

(a) Results on different numbers of classes in mAcc

1 - 20 21 - 40 41 - 60 61 - 80 81 - 100 101 - 120 121 - 140 141 - 160

Matterport3D Top 160 Classes

0

10

20

30

40

50

60

m
Ac

c
(%

)

64.5

33.2

15.6
13.2

4.5
7.8 8.6

1.7

42.9

33.3

21.9
24.2

19.4
16.0

19.7
16.3

Fully supervised
Ours

(b) Window evaluation on groups of 20 classes

Table 6.3: Impact of Increasing the Number of Object Classes. Here we show (a)
mAcc on Matterport3D [23] with different numbers of classes K, and (b) mAcc within a
window of 20 classes ranked by decreasing numbers of examples in training set, i.e. the
right-most bars represent average of the 20 classes with fewest examples (e.g., only 5 in-
stances). Even though the fully-supervised approach [39] is trained on each labelset sepa-
rately, while our model is fixed for all label sets, we can handle the less-common / long-tail
classes much better.

picture on the wall, while the GT misses it. And in the nuScenes re-
sults, the truck composed of a trailer and the truck head is segmented
correctly, but the annotation is not fine-grained enough to separate
the parts.

Impact of increasing the number of object classes. Besides the stan-
dard benchmarks with only a small set of classes, we also show
comparisons as the number of object classes increases. We evalu-

140

6.4 Experiments

ate on the most frequent K classes2 of Matterport3D, where K =
21, 40, 80, 160. For the baseline, we train a separate MinkowskiNet
for each K. However, for ours we use the same model for all K, since
it is class agnostic.

As shown in Table 6.3 (a), when trained on only 21 classes, the fully-
supervised method performs much better due to the rich 3D labels in
the most common classes (wall, floor, chair, etc.). However, with the
increase of the number of classes, our zero-shot approach overtakes
the fully-supervised approach, especially when K gets large. The rea-
son is demonstrated in Table 6.3 (b), where we show the mean accu-
racy for groups of 20 classes ranked by frequency. Fully-supervised
suffers severely in segmenting tail classes because there are only a
few instances available in the training dataset. In contrast, we are
more robust to such rare objects since we do not rely upon any 3D
labeled data.

Comparison on material estimation on 3DSSG dataset [220]. We
further conduct an experiment on the 3DSSG dataset that has anno-
tations in object-level material estimation. In Table 6.4, we compare
material class predictions for the 3DSSG test set using variants of our
approach trained on ScanNet and a fully-supervised MinkowskiNet.
Our findings here are aligned with previous expriments: 1) 2D-3D
ensembling is our best variant, 2) it underperforms fully-supervised
methods for classes with abundant examples, and 3) it excels for
classes with fewer examples.

6.4.2 Ablation Studies & Analysis

Does it matter which 2D features are used? We tested our method
with features extracted from both OpenSeg [61] and LSeg [113]. In
most experiments, we found the accuracy and generalizability of
OpenSeg features to be better than LSeg (Table 6.1, Table 6.2, and

2K = 21 was from original Matterport3D benchmark. For K = 40, 80, 160 we use most
frequent K classes of the NYU label set provided with the benchmark.

141

3D Scene Understanding with Large Vision Language Models

mIoU mAcc

Fully supervision [39] 23.5 30.6

Ours - 2D Fusion 18.6 31.9
Ours - 3D Model distilled on ScanNet 15.3 26.4
Ours - 2D-3D Ensemble 20.1 35.6

wooden padded glass metal ceramic cardboard plastic carpet stone concrete
0

20

40

60

80

m
Ac

c
(%

)

95.2 94.4
85.9

26.9

3.3 0.0 0.0 0.0 0.0 0.0

67.2
58.2

76.2

8.8

24.3

68.5

19.6 19.2

0.1

14.2

Fully supervised
Ours - 2D-3D Ensemble

Table 6.4: Comparison on 3DSSG [220] in Material Estimation. We report the av-
erage of 10 material classes in test set. Classes are sorted left-to-right by the number of
training examples.

ScanNet [44] Matterport3D [23]
mIoU mAcc mIoU mAcc

Ours
LSeg

2D Fusion 50.0 62.7 32.3 40.0
3D Distill 52.9 63.2 41.9 51.2
2D-3D Ens. 54.2 66.6 43.4 53.5

Ours
OpenSeg

2D Fusion 41.4 63.6 32.4 45.0
3D Distill 46.0 66.3 41.3 55.1
2D-3D Ens. 47.5 70.7 42.6 59.2

Table 6.5: Ablation Study. Comparison of semantic segmentation performance of differ-
ent 3D features computed by our method.

Table 6.5), so we use OpenSeg for all experiments unless explicitly
stated otherwise.

Is our 2D-3D ensemble method effective? In Table 6.5, we ablate the

142

6.4 Experiments

3D-only model 2D-3D ensemble model

Evaluation Datasets ScanNet20 Matterport40 ScanNet20 Matterport40

mIoU (%) mAcc (%) mIoU (%) mAcc (%)
Distill w/ ScanNet images 46.1 37.6 47.7 46.4
Distill w/ Matterport images 38.0 47.1 47.1 50.9

Table 6.6: Domain Transfer with Open Vocabularies.. These results show that it is
possible to apply our models trained on ScanNet [44] to a novel 3D semantic segmentation
task with a different labelset in Matterport3D [23], and vice versa. Since our trained models
are task-agnostic (they predict only CLIP features), they can be applied to arbitrary label
sets without retraining.

performance for predicting features on 3D points including only im-
age feature fusion (Sec. 6.3.1), only running the distilled Minkowsk-
iNet (Sec. 6.3.2), and our full 2D-3D ensemble model (Sec. 6.3.3). As
can be seen, on all scenarios (different datasets, metrics, and 2D fea-
tures), our proposed 2D-3D ensemble model performs the best. This
suggests that leveraging patterns in both 2D and 3D domains makes
the ensemble features more robust and descriptive.

Can we transfer to another dataset with different labelsets? Here
we investigate the ability of our trained models to handle domain
transfer between 3D segmentation benchmarks with different la-
belsets. We train on one dataset (e.g., ScanNet20) and then test on
another (e.g., Matterport40) without any retraining (Table 6.6). Since
our trained model is task agnostic (it predicts only CLIP features),
it does not over-fit to the classes of the training set, and thus can
transfer to other datasets with different classes directly. Doing the
same using a fully-supervised approach would require a sophisti-
cated domain-transfer algorithm (e.g., [53]).

What features does our 2D-3D ensemble method use most? Here
we study how our ensemble model selects among the 2D and 3D
features, and investigate how it changes with increasing numbers
of classes in the label set. As shown in Table 6.7, we find that the

143

3D Scene Understanding with Large Vision Language Models

K = 21 K = 40 K = 80 K = 160

2D Features 28.56% 29.96% 31.58% 32.46%
3D Features 71.44% 70.04% 68.42% 67.54%

Table 6.7: Behavior of Ensemble Model. Each entry indicates the percentage of points
for which the Ensemble Model selects 2D or 3D features for semantic segmentation on Mat-
terport3D for different numbers of classes K in the labelset.

majority of predictions (∼ 70%) select the 3D features, corroborating
the value of our 3D distillation model. However, the percentage of
predictions coming from 2D features increases with the number of
classes, suggesting that the 2D features are more important for long-
tailed classes, which tend to be smaller in both size and number of
training examples.

To further study our ensemble model on how to select 2D and 3D
features based on different labelsets, we visualize the results on a
Matterport3D house in Fig. 6.5. First, we can notice that our ensem-
ble model uses 3D features for those large areas like floors and walls,
while 2D features are preferrable for smaller objects. Second, when
comparing the feature selections using 21 and 160 classes, we can see
that when the number of classes increases, our ensemble model se-
lects more 2D features for the segmentation. The possible reason is
that 2D image features can better understand those fine-grained con-
cept than purely from 3D point clouds. For example, on the bottom-
right there is a pool table there. When using 21 class labels, it is
segmented as a table, so 3D features are preferrable. When using 160
class labels for 2D-3D ensemble, it is much easier to understand the
concept of “pool table” using 2D images than 3D point clouds.

Ablation on multi-view fusion strategy. We ablate different multi-
view feature fusion strategies in Table 6.8. Random means that hav-
ing multiple features corresponding to one surface point, we ran-
domly assign one feature to the 3D point. For Median, we take the

144

6.5 Applications

Random Median Mean

mIoU 38.2 40.1 41.4
mAcc 60.1 62.2 63.6

Table 6.8: Ablation on Multi-view Fusion Strategy. We report mIoU and mAcc on
ScanNet [44] with our OpenSeg feature fusion.

feature that has the smallest Euclidean distance in the feature space
to all other features. As can be seen, the simple average pooling
yields the best results, and we use it for all our experiments.

6.5 Applications

This section investigates new 3D scene understanding applications
enabled by our approach. Since the feature vectors estimated for
every 3D point are co-embedded with text and images, it becomes
possible to extract information about a scene using arbitrary text and
image queries. The following are just a few example applications.3

Open-vocabulary 3D object search. We first investigate whether it
is possible to query a 3D scene database to find examples based on
their names – e.g., “find a teddy bear in the Matterport3D test set.”
To do so, we ask a user to enter an arbitrary text string as a query,
encode the CLIP embedding vector for the query, and then compute
the cosine-similarity of that query vector with the features of every
3D point in the Matteport3D test set (containing 18 buildings with
406 indoor and outdoor regions) to discover the best matches. In our
implementation, we return at most one match per region (i.e., room,
as defined in the dataset) to ensure diversity of the retrieval results.

3Please note that all of these applications are zero-shot – i.e., none of them leverage any
labeled data from any 3D scene understanding dataset.

145

3D Scene Understanding with Large Vision Language Models

Class # # # # #
Name All Test Found Missed New

Fire Extinguisher 25 3 3 0 0
Telephone 21 4 15 2 13
Exit Sign 15 5* 8 0 3
Piano 15 1 2 0 1
Ball 15 1* 4 0 3
Hat 15 1* 1 0 0
Bulletin Board 6 0 1 0 1
Globe 5 2 5 0 3
Teddy Bear 2 0 1 0 1
Toy Giraffe 1 1 1 0 0
Yellow Egg-Shaped Vase 1 0 1 0 1

Table 6.9: Open-vocabulary 3D Search Results. Each row depicts a search of the Mat-
terport3D test set for a class given as a text query. The columns list the # of instances in
the ground truth for the whole dataset (# All), the # in the test set (# Test, counting clusters
of nearby objects as one when marked with a ’*’), the # of top matches found with 100%
precision (# Found), the # of GT instances missed amongst those top matches (# Missed),
and the # newly discovered that were not in the GT (# New).

Fig. 6.6 shows a few example top-1 results. Most other specific text
queries yield nearly perfect results. To evaluate that observation
quantitatively, we chose a sampling of 10 raw categories from the
ground truth set of Matterport3D, retrieved the best matching 3D
points from the test set, and then visually verified the correctness of
the top matches. For each query, Table 6.9 reports the numbers of
instances in the test set (# Test) along with the number of instances
found with 100% precision before the first mistake in the ranked list.
The results are very encouraging. In all of these queries, only two
ground truth instances were missed (two telephones). On the other
hand, 26 instances were found among these top matches that were
not correctly labeled in the ground truth, including 13 telephones.
Overall, these results suggest that our open-vocabulary retrieval ap-

146

6.5 Applications

plication identifies these relatively rare classes at least as well as the
manually labeling process did.

Fig. 6.7-Fig. 6.10 show the full set of results, where we display
ranked retrieval lists, with the best match first and expected matches
in parentheses. A red wireframe sphere highlights the top match.
Green/red-bordered images show correct/incorrect matches, with
incorrect ones ranked lower than the last ground truth instance.
Gray-bordered images demonstrate near misses, not expected as
matches due to their rank exceeding labeled ground truths.

We can see that the algorithm is able to retrieve very specific objects
from the database with great precision. For example, when queried
with “yellow egg-shaped vase,” its top match is indeed a match
(which was not labeled in the ground truth), and the following re-
trieval results are tan vase, a pumpkin, and a white egg-shaped vase
with gold decorations. Similarly, when queried with “teddy bear,”
it retrieves two teddy bears (neither labeled in the ground truth),
a stuffed monkey, and a stuffed lion among the top four matches.
Among all the queries in all of the experiments, The only false posi-
tive occurred with “telephone” where a bowl of stones ranked 15th,
while two ground truth instances ranked 25th and 29th. In this case,
29 of the top 30 matches were correct (20 are shown in Fig. 6.9).

These results suggest that the open-vocabulary features computed
with our 2D-3D ensemble are very effective at retrieving object types
with specific names. Further experiments are required to understand
the limitations.

Image-based 3D object detection. We next investigate whether it is
possible to query a 3D scene database to retrieve examples based on
similarities to a given input image – e.g., “find points in a Matter-
port3D building that match this image.” Given a set of query im-
ages, we encode them with CLIP image encoder, compute cosine-
similarities to 2D-3D ensemble features for 3D points, and then
threshold to produce a 3D object detection and mask, see Fig. 6.11.

147

3D Scene Understanding with Large Vision Language Models

Note that the pool table and dining table are identified correctly, even
though both are types of “tables.”

Open-vocabulary 3D scene understanding and exploration. Fi-
nally, we investigate whether it is possible to query a 3D scene to
understand properties that extend beyond category labels. Since the
CLIP embedding space is trained with a massive corpus of text, it
can represent far more than category labels – it can encode physi-
cal properties, surface materials, human affordances, potential func-
tions, room types, and so on. We hypothesize that we can use the
co-embedding our 3D points with the CLIP features to discover these
types of information about a scene.

Fig. 6.12 shows some example results for querying about physical
properties, surface materials, and potential sites of activities. From
these examples, we find that the OpenScene is indeed able to relate
words to relevant areas of the scene – e.g., the beds, couches, and
stuffed chairs match “Comfy,” the oven and fireplace match “Hot,”
and the piano keyboard matches “Play.” This diversity of 3D scene
understanding would be difficult to achieve with fully supervised
methods without massive 3D labeling efforts. In the authors’ opin-
ion, this is the most interesting result of this chapter of the thesis.

We add additional results in 3D scene exploration with open vocab-
ularies. Fig. 6.13-6.18 show results for a broad range of queries,
including ones that describe object categories in Fig. 6.13, room
types in Fig. 6.14, activities in Fig. 6.15, colors in Fig. 6.17, materials
in Fig. 6.16, and abstract concepts in Fig. 6.18. Please note the power
of using language models learned via CLIP to reason about scene
attributes and abstract concepts that would be difficult to label in a
supervised setting. For example, searching for “store” highlights 3D
points mainly on closets and cabinets (middle-right of Fig. 6.15), and
searching for “cluttered” yields points in a particularly busy closet
(top-right of Fig. 6.18). These examples demonstrate the power of
the proposed approach for scene understanding, which goes far be-
yond semantic segmentation.

148

6.6 Conclusion and Discussion

6.6 Conclusion and Discussion

This chapter introduces a task-agnostic method to co-embed 3D
points in a feature space with text and image pixels and demon-
strates its utility for zero-shot, open-vocabulary 3D scene under-
standing. It achieves state-of-the-art for zero-shot 3D semantic seg-
mentation on standard benchmarks, outperforms supervised ap-
proaches in 3D semantic segmentation with many class labels, and
enables new open-vocabulary applications where arbitrary text and
image queries can be used to query 3D scenes, all without using
any labeled 3D data. These results suggest a new direction for 3D
scene understanding, where foundation models trained from mas-
sive multi-modal datasets guide 3D scene understanding systems
rather than training them only with small labeled 3D datasets.

Limitation and Future Works. There are several limitations of our
work and still much to do to realize the full potential of the pro-
posed approach. First, the inference algorithm could probably take
better advantage of pixel features when images are present at test
time using earlier fusion (we tried this with limited success). Second,
the experiments could be expanded to investigate the limits of open-
vocabulary 3D scene understanding on a wider variety of tasks. We
evaluated extensively on closed-set 3D semantic segmentation, but
provide only qualitative results for other tasks since 3D benchmarks
with ground truth are scarce. In future work, it will be interesting
to design experiments to quantify the success of open vocabulary
queries for tasks where ground truth is not available.

149

3D Scene Understanding with Large Vision Language Models

Input 3D Geometry 160-class label sets

Our top 21-class semantic segmentation results 2D-3D features selected for 21-class segmentation

Our top 160-class semantic segmentation results 2D-3D features selected for 160-class segmentation

Figure 6.5: Study of Our 2D-3D Ensemble Model. We show semantic segmentation
results and the feature selection of our ensemble model on a Matterport3D house. We show
the comparison between the 21-class and 160-class prediction. As can be seen, when the
number of classes increases, our ensemble model selects more 2D features for the segmenta-
tion. The reason can be that, when involving more fine-grained or long-tailed classes, 2D
image features can better understand those fine-grained concept than purely from 3D point
clouds. Points using 2D features for final segmentation are marked as red, while points with
3D features are marked as blue.

150

6.6 Conclusion and Discussion

"Teddy Bear"

"Globe"

"Toy Giraffe"

"Yellow Egg-Shaped Vase"

Figure 6.6: Open-vocabulary 3D Search. These images show the 3D point within a
database of 3D house models that best matches a text query. The inset image shows a zoomed
view of the match.

151

3D Scene Understanding with Large Vision Language Models

"yellow egg-
shaped vase"

(0)

"toy giraffe"
(1)

"teddy bear"
(0)

"piano"
(1)

"globe"
(2)

Figure 6.7: Example object retrieval results (page 1 of 4). The query text is in the
left column, with the number of ground truth instances in the Matterport test set listed
in parentheses below. The images show top matching 3D points in the Matterport test set
ranked from left to right (note the red wireframe sphere around the matching point in each
image). Correct matches are marked with green borders. The one incorrect match is marked
with a red border (in page 3 of 4). Others marked with gray borders are not wrong (since
there are no further objects matching the query according to the ground truth), but are
shown as examples of near matches.152

6.6 Conclusion and Discussion

"fire
extinguisher"

(3)

"exit sign"
(5)

"antique
telephone"

(4)

Figure 6.8: Example object retrieval results (page 2 of 4). See caption of Figure 6.7 for
details.

153

3D Scene Understanding with Large Vision Language Models

"hat"
(1)

"chest of
drawers"

Figure 6.9: Example object retrieval results (page 3 of 4). See caption of Figure 6.7 for
details.

154

6.6 Conclusion and Discussion

"bulletin board"
(0)

"ball"
(1)

Figure 6.10: Example object retrieval results (page 4 of 4). See caption of Figure 6.7
for details.

155

3D Scene Understanding with Large Vision Language Models

Our SegmentationInput 3D Geometry

Image Queries

Figure 6.11: Image-based 3D Object Detection. A 3D scene (bottom left) can be queried
with images from Internet (top) to find matching 3D points (bottom right). The colors of
the image query outlines indicate the corresponding matches in the 3D point cloud. All 3
images are under Creative Commons licenses.

156

6.6 Conclusion and Discussion

MaterialsProperties Activities
Fi
re
pl
ac
e

O
ve
n

Pi
an

o

Pa
in
tin

g

O
ve
n

Si
nk

Si
nk

W
in
do
w

Do
ll

Do
llDo

ll

Pa
in
tin

g

C
up

bo
ar
d

Si
nk

Tu
b

Pa
in
tin

g

O
ve
n

Fi
re

Ex
tin

gu
ish

er

Si
nk

Tu
b

"
C
o
m
f
y
"

"
W
e
t
"

"
H
o
t
"

"
F
r
a
g
i
l
e
"

"
A
r
t
i
s
t
i
c
"

"
F
a
b
r
i
c
"

"
W
o
o
d
"

"
M
e
t
a
l
"

P
o
r
c
e
l
a
i
n
"

"
G
l
a
s
s
"

"
S
l
e
e
p
"

"
W
a
s
h
"

"
C
o
o
k
"

"
D
i
n
e
"

"
P
l
a
y
"

Fi
gu

re
6.

12
:O

pe
n-

vo
ca

bu
la

ry
3D

Sc
en

e
Ex

pl
or

at
io

n.
Ex

am
pl

es
of

di
sc

ov
er

in
g

pr
op

er
tie

s,
su

rf
ac

em
at

er
ia

ls
,a

nd
ac

tiv
ity

si
te

s
w

ith
in

a
sc

en
e

us
in

g
op

en
-v

oc
ab

ul
ar

y
qu

er
ie

s.
Fo

r
ea

ch
ex

am
pl

e,
th

e
qu

er
y

te
xt

is
lis

te
d

be
lo

w
(e

.g
.,

“C
om

fy
”)

,a
nd

th
e

3D
po

in
ts

ar
e

co
lo

re
d

ba
se

d
on

th
ei

r
co

si
ne

si
m

ila
ri

ty
to

th
e

cl
ip

em
be

dd
in

g
fo

r
th

e
qu

er
y

te
xt

–
ye

llo
w

is
hi

gh
es

t,
gr

ee
n

is
m

id
dl

e,
bl

ue
is

lo
w

,a
nd

un
co

lo
re

d
is

lo
w

es
t.

157

3D Scene Understanding with Large Vision Language Models

Input 3D Geometry “bed”

“chair” “table”

“lamp” “plant”

Figure 6.13: Open-Vocabulary Queries for Common Object Types.

158

6.6 Conclusion and Discussion

Input 3D Geometry “bathroom”

“bedroom” “dining room”

“kitchen” “living room”

Figure 6.14: Open-Vocabulary Queries for Room Types.

159

3D Scene Understanding with Large Vision Language Models

Input 3D Geometry “cook”

“dine” “store”

“wash” “sleep”

Figure 6.15: Open-Vocabulary Queries for Activity Sites.

160

6.6 Conclusion and Discussion

Input 3D Geometry “fabric”

“metal” “wood”

Figure 6.16: Open-Vocabulary Queries for Materials.

161

3D Scene Understanding with Large Vision Language Models

Input 3D Geometry “black”

“brown” “white”

“orange” “red”

Figure 6.17: Open-Vocabulary Queries for Colors.

162

6.6 Conclusion and Discussion

Input 3D Geometry “cluttered”

“outdoor” “open”

“fire” “water”

Figure 6.18: Open-Vocabulary Queries for Abstract Concepts.

163

3D Scene Understanding with Large Vision Language Models

164

C H A P T E R 7
Conclusion

The realm of artificial intelligence is continuously evolving, with
scene representation playing a pivotal role in its advancement. As
AI predominantly relies on neural networks, the significance of neu-
ral scene representation has grown exponentially. This thesis has
delved deep into this area, introducing a set of novel neural scene
representations that have not only advanced the current state-of-the-
art in 3D reconstruction and scene understanding but also paved
the way for groundbreaking applications. In particular, the contri-
butions made in this thesis belong to the pioneering effort to rev-
olutionize the fields of 3D reconstruction from point clouds, dense
visual SLAM, and 3D scene understandings with open vocabularies.

165

Conclusion

7.1 Core Contributions & Applications

This thesis has made seminal contributions across various facets of
neural scene representation. Here’s a brief overview:

• Development of a neural implicit-based 3D representation that has
found applications in 3D reconstruction, generative modeling, and
robot grasping.

• Addressing the challenge of slow inference speed by introducing a
differentiable Poisson solver, which has been adopted for detailed
mesh generation and real-time rendering.

• Proposing a hierarchical neural representation for online 3D recon-
struction from unposed RGB-D sequences, which has been widely
adopted in novel view synthesis and 3D surface reconstruction.

• Introducing a zero-shot approach for high-level scene understanding,
inspiring research in open-set 3D maps and 3D-assisted dialog.

In detail, in Chapter 3, we introduced a neural implicit-based 3D rep-
resentation that enables the fine-grained implicit 3D reconstruction
of single objects, scales to large indoor scenes, and generalizes well
from synthetic to real data. Noteworthy follow-up works, such as
NKF [235] and NKSR [81], have leveraged our 3D feature grid en-
coder, achieving enhanced point cloud reconstruction quality. Addi-
tionally, distinguished works like EG3D [21] and TensoRF [25] have
revolutionized the field of controllable 3D generative modelling and
novel view synthesis, primarily by incorporating our efficient tri-
plane representations. In a significant advancement, HexPlane [19]
and K-Planes [54] further extend the 3 feature plane by decompos-
ing a 4D space-time dynamic scene into 6 feature planes, leading to
100× speed up in training. Furthermore, our tri-plane models have
demonstrated their efficacy, particularly in enhancing the precision
of robotic grasping techniques [92, 193].

In Chapter 4, we have observed that the slow inference speed of
neural implicit representations is a key limitation for real-world ap-

166

7.1 Core Contributions & Applications

plications. To overcome this limitation, we turned our attension to
the classic yet ubiquitous point cloud representation, introducing a
differentiable variant of the Poisson solver. This seamlessly bridges
the explicit 3D point representation with the 3D mesh through the
implicit indicator field, boosting inference speeds by one order of
magnitude. Due to the unique advantages of the proposed dif-
ferentiable Poisson solver, researchers have harnessed its capabili-
ties to obtain detailed meshes from point clouds, especially those
stemming from latent point diffusion models [137, 263]. Addition-
ally, some works also directly apply SAP to multi-view reconstruc-
tion [125, 126], paving the way for fast optimization speed and real-
time rendering of high-resolution images.

In Chapter 5, we delved into a more practical challenge: the online
3D reconstruction from unposed RGB-D sequences, commonly re-
ferred to as dense RGB-D SLAM. Addressing this, we introduced
a hierarchical neural representation that incorporates multi-level lo-
cal information, aiming not just at capturing precise 3D geometry
but also at obtaining camera poses within expansive indoor envi-
ronments. Compared to recent neural implicit SLAM systems, our
approach stands out for its enhanced scalability, robustness, and ef-
ficiency due to the proposed hierarchical design. Notably, our pro-
posed representation – hierarchical feature grids together with tiny
MLPs – was also introduced in a seminar work Instant-NGP [150]
one month after our paper appeared on arXiv. It has since gained
traction, finding applications in rapid novel view synthesis [111,206],
3D surface modeling [88, 118, 260], and in the realm of dense visual
RGB(D) SLAM [93, 113, 222, 280].

In Chapter 6, our focus shifted to the intricate task of high-level
scene understanding within a reconstructed 3D scene. Unlike tra-
ditional approaches, where they train from labeled 3D datasets and
can handle only one single task, we pioneered a zero-shot approach
that eliminates the need for any labeled data and enables open-
vocabulary queries. Our method has unlocked a plethora of novel
3D scene understanding tasks like rare object identification, mate-
rial estimation, affordance prediction, activity estimation, room type

167

Conclusion

predictions, etc. Inspired by our work, several studies have emerged,
exploring open-set 3D maps similar to ours but using SLAM [85] or
NeRF [100, 215]. Furthermore, 3D-LLM [74] has expanded our foun-
dation to new tasks such as 3D question answering, 3D-assisted dia-
log, and navigation.

All in all, while there is much more work to be done, we believe
that the research presented in this thesis has laid a strong foundation
for the future of learning-based 3D reconstruction and scene under-
standing.

7.2 Future Work

The rapid progress over the last years and recent breakthroughs
in neural implicit representations and large language models have
demonstrated a promising future in 3D reconstruction and scene un-
derstanding. In this section, we provide some interesting future di-
rections in this domain.

Reconstructing Static Scenes in Dynamic Environments. Most
methods for modeling static scenes often operate under the assump-
tion of a distraction-free environment, meaning the absence of any
non-persistent elements during the capture session. However, real-
world scenarios are full of such dynamic elements or distractors.
These can range from the pronounced shadows cast by operators
navigating the scene to pedestrians casually walking within the cam-
era’s field of view. Overlooking these distractors during reconstruc-
tion can significantly harm the quality of the reconstruction scene.
Enhancing 3D reconstruction to account for these dynamic elements
can ease both the capture and post-processing phases. A recent work
RobustNeRF [184] touched upon this topic but its efficacy is primar-
ily limited to synthetic or relatively constrained scenes. Adopting re-
cent advances in foundation models for semantic segmentation like
SAM [103] for automatic distractor removal is an extremely stimulat-
ing direction.

168

7.2 Future Work

3D Reconstruction/NeRF Meets Continual Learning. 3D recon-
struction/NeRF normally only captures the scene at a certain times-
tamp. However, real-world environments are evolving continuously.
Consider an apartment: throughout the day, the captured images
might reflect shifts in object placement, the introduction of new
items, or variations in lighting and weather conditions, etc. The chal-
lenge lies in enabling models to continually learn from such evolv-
ing data streams. Simply retraining models on all revealed data is
resource-intensive, while updates based solely on new data lead to
catastrophic forgetting, i.e. where previously learned scene geome-
tries and appearances are lost. Moreover, Given that most scene ge-
ometries remain consistent over short time intervals, there is a press-
ing need for strategies that can update reconstructions/NeRFs both
efficiently and locally. The recent work CLNeRF [17] integrates con-
tinual learning with NeRF, offering an initial solution to the catas-
trophic forgetting problem. However, its application is limited to
small scenes and still struggles to efficiently address local changes.
Injecting the power of foundation models into the continuous 3D re-
construction pipeline might offer a promising avenue to overcome
these challenges.

Finetuning Large Vision-Language Models. As discussed in Chap-
ter 6, our open-vocabulary model demonstrates commendable ver-
satility across a variety of 3D scene understanding tasks. However,
when it comes to specific tasks, such as 3D semantic segmentation
on a fixed class set, there is a noticeable performance disparity com-
pared to models trained exclusively on labeled data. This raises a
compelling query: How can we adeptly fine-tune our model using
limited data to excel in a specialized task, without compromising its
inherent capabilities? This challenge not only underscores the intri-
cacies of model adaptability but also holds significant implications
for the broader realm of task-specific 3D scene understanding. One
promising idea is to adapt recent works of adapting foundation mod-
els, like OFT [174] or LoRA [76].

169

Conclusion

170

A P P E N D I X A
Appendix

A.1 Derivations for Differentiable Poisson Solver

A.1.1 Point Rasterization

Given the origin of the voxel grid c0 = (x0, y0, z0), and the size
of each voxel s = (sx, sy, sz), we scatter the point normal values
to the voxel grid vertices, weighted by the trilinear interpolation
weights. For a given point pi := (ci, ni) ∈ {pi, i = 1, 2, · · · , N},
with point location ci = (xi, yi, zi) and point normal ni = (x̂i, ŷi, ẑi),
we can compute the neighbor indices as {j}, where j = (jx, jy, jz) ∈
(
⌊

xi−x0
sx

⌋
,
⌈

xi−x0
sx

⌉
)× (

⌊
yi−y0

sy

⌋
,
⌈

yi−y0
sy

⌉
)× (

⌊
zi−z0

sz

⌋
,
⌈

zi−z0
sz

⌉
). Here bc

and de denote the floor and ceil operators for rounding integers. We
denote the trilinear sampling weight function as T (cp, cv, s), where
cp and cv denote the location of the point and the grid vertex. The

171

Appendix

contribution from point pi to voxel grid vertex j can be computed as:

vj←i = T (ci, s� j + c0, s)ni (A.1)

Hence the value at grid index j ∈ r × r × r can be computed via
summing over all neighborhood points:

vj = ∑
i∈Nj

T (ci, s� j + c0, s)ni (A.2)

where Nj denotes the set of point indices in the neighborhood of
vertex j.

A.1.2 Spectral Methods for Solving PSR

We solve the PDEs using spectral methods [18]. In three dimensions,
the multidimensional Fourier Transform and Inverse Fourier Trans-
form are defined as:

f̃ (u) := FFT(f (x)) =
∫∫∫ ∞

∞
f (x)e−2πix·udx (A.3)

f (x) := IFFT(f̃ (u)) =
∫∫∫ ∞

∞
f̃ (u)e2πix·udu (A.4)

where x := (x, y, z) are the spatial coordinates, and u := (u, v, w)
represent the frequencies corresponding to x, y and z. Derivatives in
the spectral space can be analytically computed:

∂

∂xj
f (x) =

∫∫∫ ∞

∞
2πixj f̃ (u)e2πix·udu = IFFT(2πixj f̃ (u))

In discrete form, we have the rasterized point normals v :=
(vx, vy, vz), where vx, vy, vz ∈ Rn. Hence in spectral domain, the
divergence of the rasterized point normals can be written as:

FFT(∇ · v) = 2πi(u · ṽ) (A.5)

172

A.1 Derivations for Differentiable Poisson Solver

The Laplacian operator can be simply written as:

FFT(∇2) = −4π2||u||2 (A.6)

Therefore, the unnormalized solution to the Poisson Equations χ̃, not
accounting for boundary conditions, can be written as:

χ̃ = g̃σ,r(u)
iu� ṽ
−2π||u||2 g̃σ,r(u) = exp

(
− 2

σ2||u||2
r2

)
(A.7)

Where g̃σ,r(u) is a Gaussian smoothing kernel of bandwidth σ for
grid resolution of r in the spectral domain to mitigate the ringing ef-
fects as a result of the Gibbs phenomenon from rasterizing the point
normals.

The unnormalized indicator function in the physical domain χ′ can
be obtained via inverse Fourier Transform:

χ′ = IFFT(χ̃) (A.8)

We further normalize the indicator field to incorporate the boundary
condition that the indicator field is valued at zero at point locations
and valued ±0.5 inside and outside the shapes.

χ =
m

abs(χ′|x=0)︸ ︷︷ ︸
scale

(
χ′ − 1

|{c}| ∑
c∈{c}

χ′|x=c

)

︸ ︷︷ ︸
subtract by mean

(A.9)

173

Appendix

174

References

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech,
Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican,
Malcolm Reynolds, et al. Flamingo: a visual language model for few-
shot learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning of
shapes from raw data. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020.

[3] Matan Atzmon and Yaron Lipman. Sald: Sign agnostic learning with
derivatives. In Proc. of the International Conf. on Learning Representa-
tions (ICLR), 2021.

[4] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolu-
tional neural networks by extension operators. ACM Trans. on Graph-
ics (TOG), 2018.

References

[5] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias
Nießner, and Justus Thies. Neural rgb-d surface reconstruction. In
Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2022.

[6] Sai Praveen Bangaru, Michaël Gharbi, Fujun Luan, Tzu-Mao Li,
Kalyan Sunkavalli, Milos Hasan, Sai Bi, Zexiang Xu, Gilbert Bern-
stein, and Fredo Durand. Differentiable rendering of neural sdfs
through reparameterization. In SIGGRAPH Asia Conference Papers,
2022.

[7] Jonathan T Barron and Ben Poole. The fast bilateral solver. In Proc. of
the European Conf. on Computer Vision (ECCV), 2016.

[8] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven
Behnke, Cyrill Stachniss, and Jurgen Gall. Semantickitti: A dataset
for semantic scene understanding of lidar sequences. In Proc. of the
International Conf. on Computer Vision (ICCV), 2019.

[9] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger,
and Andrew J Davison. Codeslam—learning a compact, optimisable
representation for dense visual slam. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

[10] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. Dynamic FAUST: registering human bodies in motion. In Proc.
of the Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[11] Alexandre Boulch and Renaud Marlet. Poco: Point convolution for
surface reconstruction. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022.

[12] Aljaž Božič, Pablo Palafox, Justus Thies, Angela Dai, and Matthias
Nießner. Transformerfusion: Monocular rgb scene reconstruction us-
ing transformers. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[13] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and

176

References

Michael Cohen. Unstructured lumigraph rendering. ACM Trans. on
Graphics (TOG), 2001.

[14] Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, and Daniel
Cremers. Real-time camera tracking and 3d reconstruction using
signed distance functions. In Proc. Robotics: Science and Systems (RSS),
2013.

[15] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo
Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for au-
tonomous driving. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2020.

[16] Shengqu Cai, Eric Ryan Chan, Songyou Peng, Mohamad Shahbazi,
Anton Obukhov, Luc Van Gool, and Gordon Wetzstein. DiffDreamer:
Towards consistent unsupervised single-view scene extrapolation
with conditional diffusion models. In Proc. of the International Conf.
on Computer Vision (ICCV), 2023.

[17] Zhipeng Cai and Matthias Mueller. Clnerf: Continual learning meets
nerf. In Proc. of the International Conf. on Computer Vision (ICCV), 2023.

[18] Claudio Canuto, M Yousuff Hussaini, Alfio Quarteroni, and
Thomas A Zang. Spectral methods: fundamentals in single domains.
Springer Science & Business Media, 2007.

[19] Ang Cao and Justin Johnson. Hexplane: A fast representation for
dynamic scenes. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[20] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian
Straub, Steven Lovegrove, and Richard Newcombe. Deep local
shapes: Learning local sdf priors for detailed 3d reconstruction. In
Proc. of the European Conf. on Computer Vision (ECCV), 2020.

[21] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Box-
iao Pan, Shalini De Mello, Orazio Gallo, Leonidas J Guibas, Jonathan

177

References

Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d genera-
tive adversarial networks. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022.

[22] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gor-
don Wetzstein. pi-gan: Periodic implicit generative adversarial net-
works for 3d-aware image synthesis. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021.

[23] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber,
Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng, and
Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor en-
vironments. In Proc. of the International Conf. on 3D Vision (3DV), 2017.

[24] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanra-
han, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shu-
ran Song, Hao Su, Jianxiong Xiao, and Fisher Yu. Shapenet: An
information-rich 3d model repository. arXiv.org, 2015.

[25] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su.
Tensorf: Tensorial radiance fields. In Proc. of the European Conf. on
Computer Vision (ECCV), 2022.

[26] Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanre-
fer: 3d object localization in rgb-d scans using natural language. In
Proc. of the European Conf. on Computer Vision (ECCV), 2020.

[27] Zhiqin Chen. Neural Mesh Reconstruction. PhD thesis, Simon Fraser
University, 2023.

[28] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao
Zhang. Neural dual contouring. ACM Trans. on Graphics (TOG), 2022.

[29] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative
shape modeling. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019.

[30] Zhiqin Chen and Hao Zhang. Neural marching cubes. ACM Trans.
on Graphics (TOG), 2021.

178

References

[31] Ali Cheraghian, Shafin Rahman, Dylan Campbell, and Lars Peters-
son. Mitigating the hubness problem for zero-shot learning of 3d
objects. In Proc. of the British Machine Vision Conf. (BMVC), 2019.

[32] Ali Cheraghian, Shafin Rahman, Dylan Campbell, and Lars Peters-
son. Transductive zero-shot learning for 3d point cloud classification.
In Proc. of the IEEE Winter Conference on Applications of Computer Vision
(WACV), 2020.

[33] Ali Cheraghian, Shafin Rahman, Townim F Chowdhury, Dylan
Campbell, and Lars Petersson. Zero-shot learning on 3d point cloud
objects and beyond. International Journal of Computer Vision (IJCV),
2022.

[34] Ali Cheraghian, Shafin Rahman, and Lars Petersson. Zero-shot learn-
ing of 3d point cloud objects. In MVA, 2019.

[35] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Worts-
man, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig
Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive
language-image learning. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2023.

[36] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit
functions in feature space for 3d shape reconstruction and comple-
tion. In Proc. of the Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020.

[37] Jaesung Choe, Sunghoon Im, François Rameau, Minjun Kang, and
In So Kweon. Volumefusion: Deep depth fusion for 3d scene recon-
struction. In Proc. of the International Conf. on Computer Vision (ICCV),
2021.

[38] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust recon-
struction of indoor scenes. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2015.

[39] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-
temporal convnets: Minkowski convolutional neural networks. In

179

References

Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

[40] Christopher Bongsoo Choy, Danfei Xu, JunYoung Gwak, Kevin Chen,
and Silvio Savarese. 3d-r2n2: A unified approach for single and
multi-view 3d object reconstruction. In Proc. of the European Conf. on
Computer Vision (ECCV), 2016.

[41] Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas
Brox, and Olaf Ronneberger. 3d u-net: Learning dense volumetric
segmentation from sparse annotation. In Medical Image Computing
and Computer-Assisted Intervention (MICCAI), 2016.

[42] Brian Curless and Marc Levoy. A volumetric method for building
complex models from range images. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, 1996.

[43] Jan Czarnowski, Tristan Laidlow, Ronald Clark, and Andrew J Davi-
son. Deepfactors: Real-time probabilistic dense monocular slam.
IEEE Robotics and Automation Letters (RA-L), 2020.

[44] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d
reconstructions of indoor scenes. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[45] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Christian Theobalt. Bundlefusion: Real-time globally consistent 3d
reconstruction using on-the-fly surface reintegration. ACM Trans. on
Graphics (TOG), 2017.

[46] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Jürgen
Sturm, and Matthias Nießner. Scancomplete: Large-scale scene com-
pletion and semantic segmentation for 3d scans. In Proc. of the Conf.
on Computer Vision and Pattern Recognition (CVPR), 2018.

[47] François Darmon, Bénédicte Bascle, Jean-Clément Devaux, Pascal
Monasse, and Mathieu Aubry. Improving neural implicit surfaces

180

References

geometry with patch warping. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022.

[48] Shengheng Deng, Xun Xu, Chaozheng Wu, Ke Chen, and Kui Jia. 3d
affordancenet: A benchmark for visual object affordance understand-
ing. In Proc. of the Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

[49] Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai,
and Xiaojuan Qi. Pla: Language-driven open-vocabulary 3d scene
understanding. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[50] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse
odometry. IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 2017.

[51] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and
Michael Wimmer. Points2surf learning implicit surfaces from point
clouds. In Proc. of the European Conf. on Computer Vision (ECCV), 2020.

[52] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set gener-
ation network for 3d object reconstruction from a single image. In
Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2017.

[53] Hehe Fan, Xiaojun Chang, Wanyue Zhang, Yi Cheng, Ying Sun, and
Mohan Kankanhalli. Self-supervised global-local structure modeling
for point cloud domain adaptation with reliable voted pseudo labels.
In Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2022.

[54] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg,
Benjamin Recht, and Angjoo Kanazawa. K-planes: Explicit radiance
fields in space, time, and appearance. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2023.

[55] Qiancheng Fu, Qingshan Xu, Yew Soon Ong, and Wenbing Tao.
Geo-neus: Geometry-consistent neural implicit surfaces learning for

181

References

multi-view reconstruction. Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[56] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson, Morgan
McGuire, and Sanja Fidler. Learning deformable tetrahedral meshes
for 3d reconstruction. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[57] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Proc. of the
Conf. on Computer Vision and Pattern Recognition (CVPR), 2012.

[58] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and
Thomas A. Funkhouser. Local deep implicit functions for 3d shape.
In Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2020.

[59] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T
Freeman, and Thomas Funkhouser. Learning shape templates with
structured implicit functions. In Proc. of the International Conf. on Com-
puter Vision (ICCV), 2019.

[60] Kyle Genova, Xiaoqi Yin, Abhijit Kundu, Caroline Pantofaru, For-
rester Cole, Avneesh Sud, Brian Brewington, Brian Shucker, and
Thomas Funkhouser. Learning 3d semantic segmentation with only
2d image supervision. In Proc. of the International Conf. on 3D Vision
(3DV), 2021.

[61] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Open-
vocabulary image segmentation. In Proc. of the European Conf. on Com-
puter Vision (ECCV), 2022.

[62] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh R-CNN.
In Proc. of the International Conf. on Computer Vision (ICCV), 2019.

[63] Shubham Goel, Georgia Gkioxari, and Jitendra Malik. Differentiable
stereopsis: Meshes from multiple views using differentiable render-
ing. In Proc. of the Conf. on Computer Vision and Pattern Recognition
(CVPR), 2022.

182

References

[64] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lip-
man. Implicit geometric regularization for learning shapes. In Proc.
of the International Conf. on Machine learning (ICML), 2020.

[65] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Rus-
sell, and Mathieu Aubry. AtlasNet: A papier-mâché approach to
learning 3d surface generation. In Proc. of the Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2018.

[66] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-
vocabulary object detection via vision and language knowledge dis-
tillation. In Proc. of the International Conf. on Learning Representations
(ICLR), 2022.

[67] Haoyu Guo, Sida Peng, Haotong Lin, Qianqian Wang, Guofeng
Zhang, Hujun Bao, and Xiaowei Zhou. Neural 3d scene reconstruc-
tion with the manhattan-world assumption. In Proc. of the Conf. on
Computer Vision and Pattern Recognition (CVPR), 2022.

[68] Huy Ha and Shuran Song. Semantic abstraction: Open-world 3d
scene understanding from 2d vision-language models. In Proc. Conf.
on Robot Learning (CoRL), 2022.

[69] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg: Occupancy-
aware 3d instance segmentation. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020.

[70] Christian Häne, Sohubham Tulsiani, and Jitendra Malik. Hierarchi-
cal surface prediction. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 2019.

[71] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or.
Point2mesh: a self-prior for deformable meshes. In ACM Trans. on
Graphics (TOG), 2020.

[72] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proc. of the Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

183

References

[73] Yining Hong, Chunru Lin, Yilun Du, Zhenfang Chen, Joshua B
Tenenbaum, and Chuang Gan. 3d concept learning and reasoning
from multi-view images. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2023.

[74] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du,
Zhenfang Chen, and Chuang Gan. 3d-llm: Injecting the 3d world into
large language models. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

[75] Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and
Ying He. Iterative poisson surface reconstruction (iPSR) for unori-
ented points. ACM Trans. on Graphics (TOG), 2022.

[76] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-
rank adaptation of large language models. In Proc. of the International
Conf. on Learning Representations (ICLR), 2022.

[77] Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, and Tien-Tsin
Wong. Bidirectional projection network for cross dimension scene
understanding. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021.

[78] Zeyu Hu, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong,
Xin Wang, Guangyuan Sun, Hongbo Fu, and Chiew-Lan Tai. Vmnet:
Voxel-mesh network for geodesic-aware 3d semantic segmentation.
In Proc. of the International Conf. on Computer Vision (ICCV), 2021.

[79] Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi
Tran, Lap-Fai Yu, and Sai-Kit Yeung. Scenenn: A scene meshes
dataset with annotations. In Proc. of the International Conf. on 3D Vision
(3DV), 2016.

[80] Jackson Huang. U-net implementation in pytorch. https://github.
com/jaxony/unet-pytorch, 2017.

[81] Jiahui Huang, Zan Gojcic, Matan Atzmon, Or Litany, Sanja Fidler,

184

https://github.com/jaxony/unet-pytorch
https://github.com/jaxony/unet-pytorch

References

and Francis Williams. Neural kernel surface reconstruction. In Proc.
of the Conf. on Computer Vision and Pattern Recognition (CVPR), 2023.

[82] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-Min Hu.
Di-fusion: Online implicit 3d reconstruction with deep priors. In Proc.
of the Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[83] Jingwei Huang, Hao Su, and Leonidas J. Guibas. Robust watertight
manifold surface generation method for shapenet models. arXiv.org,
1802.01698, 2018.

[84] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias
Nießner, and Leonidas J Guibas. Texturenet: Consistent lo-
cal parametrizations for learning from high-resolution signals on
meshes. In Proc. of the Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

[85] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu,
Mohd Omama, Tao Chen, Shuang Li, Ganesh Iyer, Soroush Saryazdi,
Nikhil Keetha, Ayush Tewari, et al. Conceptfusion: Open-set multi-
modal 3d mapping. In Proc. Robotics: Science and Systems (RSS), 2023.

[86] Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu Fang. Sur-
facenet: An end-to-end 3d neural network for multiview stereopsis.
In Proc. of the International Conf. on Computer Vision (ICCV), 2017.

[87] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu
Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scal-
ing up visual and vision-language representation learning with noisy
text supervision. In Proc. of the International Conf. on Machine learning
(ICML), 2021.

[88] Chenxing Jiang, Hanwen Zhang, Peize Liu, Zehuan Yu, Hui Cheng,
Boyu Zhou, and Shaojie Shen. H2-mapping: Real-time dense map-
ping using hierarchical hybrid representation. IEEE Robotics and Au-
tomation Letters (RA-L), 2023.

[89] Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas J

185

References

Guibas. Shapeflow: Learnable deformation flows among 3d shapes.
In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[90] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang,
Matthias Nießner, and Thomas Funkhouser. Local implicit grid rep-
resentations for 3d scenes. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020.

[91] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff:
Differentiable rendering of signed distance fields for 3d shape opti-
mization. In Proc. of the Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2020.

[92] Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, and Yuke
Zhu. Synergies between affordance and geometry: 6-dof grasp detec-
tion via implicit representations. In Proc. Robotics: Science and Systems
(RSS), 2021.

[93] Mohammad Mahdi Johari, Camilla Carta, and François Fleuret. Es-
lam: Efficient dense slam system based on hybrid representation of
signed distance fields. In Proc. of the Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2023.

[94] Olaf Kähler, Victor A Prisacariu, and David W Murray. Real-time
large-scale dense 3d reconstruction with loop closure. In Proc. of the
European Conf. on Computer Vision (ECCV), 2016.

[95] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and Jitendra
Malik. Learning category-specific mesh reconstruction from image
collections. In Proc. of the European Conf. on Computer Vision (ECCV),
2018.

[96] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-
view stereo machine. Advances in Neural Information Processing Sys-
tems (NIPS), 2017.

[97] Michael Kazhdan and Hugues Hoppe. Screened poisson surface re-
construction. ACM Trans. on Graphics (TOG), 2013.

186

References

[98] Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe. Pois-
son surface reconstruction. In Proceedings of the Fourth Eurographics
Symposium on Geometry Processing, Cagliari, Sardinia, Italy, June 26-28,
2006, volume 256, pages 61–70, 2006.

[99] Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer, Kari Pulli,
and Gordon Wetzstein. Neural lumigraph rendering. In Proc. of the
Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[100] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and
Matthew Tancik. Lerf: Language embedded radiance fields. In Proc.
of the International Conf. on Computer Vision (ICCV), 2023.

[101] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Proc. of the International Conf. on Learning Representa-
tions (ICLR), 2015.

[102] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Proc. of the International Conf. on Machine learning
(ICML), 2015.

[103] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rol-
land, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C.
Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment any-
thing. In Proc. of the International Conf. on Computer Vision (ICCV),
2023.

[104] Georg Klein and David Murray. Parallel tracking and mapping on
a camera phone. In Proc. of the International Symposium on Mixed and
Augmented Reality (ISMAR), 2009.

[105] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. De-
composing nerf for editing via feature field distillation. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.

[106] Lukas Koestler, Nan Yang, Niclas Zeller, and Daniel Cremers. Tan-
dem: Tracking and dense mapping in real-time using deep multi-
view stereo. In Proc. Conf. on Robot Learning (CoRL), 2021.

187

References

[107] Ravikrishna Kolluri. Provably good moving least squares. ACM
Transactions on Algorithms (TALG), 2008.

[108] Chen Kong, Chen-Hsuan Lin, and Simon Lucey. Using locally cor-
responding cad models for dense 3d reconstructions from a single
image. In Proc. of the Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[109] Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewing-
ton, Thomas Funkhouser, and Caroline Pantofaru. Virtual multi-view
fusion for 3d semantic segmentation. In Proc. of the European Conf. on
Computer Vision (ECCV), 2020.

[110] Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, and Anelia An-
gelova. F-vlm: Open-vocabulary object detection upon frozen vision
and language models. In Proc. of the International Conf. on Learning
Representations (ICLR), 2023.

[111] Andreas Kurz, Thomas Neff, Zhaoyang Lv, Michael Zollhöfer, and
Markus Steinberger. Adanerf: Adaptive sampling for real-time ren-
dering of neural radiance fields. In Proc. of the European Conf. on Com-
puter Vision (ECCV), 2022.

[112] John Lambert, Zhuang Liu, Ozan Sener, James Hays, and Vladlen
Koltun. Mseg: A composite dataset for multi-domain semantic seg-
mentation. In Proc. of the Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2020.

[113] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and
René Ranftl. Language-driven semantic segmentation. In Proc. of the
International Conf. on Learning Representations (ICLR), 2022.

[114] Jia Li and Alfred O Hero. A spectral method for solving elliptic equa-
tions for surface reconstruction and 3d active contours. In Proc. IEEE
International Conf. on Image Processing (ICIP), 2001.

[115] Jinke Li, Xiao He, Yang Wen, Yuan Gao, Xiaoqiang Cheng, and Dan
Zhang. Panoptic-phnet: Towards real-time and high-precision lidar

188

References

panoptic segmentation via clustering pseudo heatmap. In Proc. of the
Conf. on Computer Vision and Pattern Recognition (CVPR), 2022.

[116] Xueting Li, Sifei Liu, Kihwan Kim, Xiaolong Wang, Ming-Hsuan
Yang, and Jan Kautz. Putting humans in a scene: Learning affor-
dance in 3d indoor environments. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019.

[117] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan
Chen. Pointcnn: Convolution on x-transformed points. Advances in
Neural Information Processing Systems (NIPS), 2018.

[118] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias
Unberath, Ming-Yu Liu, and Chen-Hsuan Lin. Neuralangelo: High-
fidelity neural surface reconstruction. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2023.

[119] Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao,
Hang Zhang, Peizhao Zhang, Peter Vajda, and Diana Marculescu.
Open-vocabulary semantic segmentation with mask-adapted clip. In
Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2023.

[120] Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao,
Hang Zhang, Peizhao Zhang, Peter Vajda, and Diana Marculescu.
Open-vocabulary semantic segmentation with mask-adapted clip. In
Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2023.

[121] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes:
Learning explicit surface representations. In Proc. of the Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2018.

[122] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel dataset
and benchmarks for urban scene understanding in 2d and 3d. IEEE
Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2022.

[123] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey.

189

References

Barf: Bundle-adjusting neural radiance fields. In Proc. of the Interna-
tional Conf. on Computer Vision (ICCV), 2021.

[124] Chen-Hsuan Lin, Oliver Wang, Bryan C. Russell, Eli Shechtman,
Vladimir G. Kim, Matthew Fisher, and Simon Lucey. Photometric
mesh optimization for video-aligned 3d object reconstruction. In
Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

[125] Lixiang Lin, Songyou Peng, Qijun Gan, and Jianke Zhu. FastHuman:
Reconstructing high-quality clothed human in minutes. In Proc. of the
International Conf. on 3D Vision (3DV), 2024.

[126] Lixiang Lin, Jianke Zhu, and Yisu Zhang. Multiview textured mesh
recovery by differentiable rendering. IEEE Transactions on Circuits and
Systems for Video Technology, 2022.

[127] Stefan Lionar, Daniil Emtsev, Dusan Svilarkovic, and Songyou Peng.
Dynamic plane convolutional occupancy networks. In Proc. of the
IEEE Winter Conference on Applications of Computer Vision (WACV),
2021.

[128] Bo Liu, Shuang Deng, Qiulei Dong, and Zhanyi Hu. Language-level
semantics conditioned 3d point cloud segmentation. arXiv preprint
arXiv:2107.00430, 2021.

[129] Kunhao Liu, Fangneng Zhan, Jiahui Zhang, Muyu Xu, Yingchen Yu,
Abdulmotaleb El Saddik, Christian Theobalt, Eric Xing, and Shijian
Lu. 3d open-vocabulary segmentation with foundation models. arXiv
preprint arXiv:2305.14093, 2023.

[130] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys,
and Zhaopeng Cui. DIST: Rendering deep implicit signed distance
function with differentiable sphere tracing. In Proc. of the Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

[131] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys,
and Zhaopeng Cui. DIST: rendering deep implicit signed distance

190

References

function with differentiable sphere tracing. In Proc. of the Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

[132] Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Peng-Shuai Wang, Xin Tong,
and Yang Liu. Deep implicit moving least-squares functions for 3d
reconstruction. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021.

[133] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. Learning to
infer implicit surfaces without 3d supervision. In Advances in Neural
Information Processing Systems (NIPS), 2019.

[134] Yunze Liu, Qingnan Fan, Shanghang Zhang, Hao Dong, Thomas
Funkhouser, and Li Yi. Contrastive multimodal fusion with tuple-
infonce. In Proc. of the International Conf. on Computer Vision (ICCV),
2021.

[135] Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping
Wang. Sparseneus: Fast generalizable neural surface reconstruction
from sparse views. In Proc. of the European Conf. on Computer Vision
(ECCV), 2022.

[136] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In ACM Trans. on
Graphics (TOG), 1987.

[137] Zhaoyang Lyu, Jinyi Wang, Yuwei An, Ya Zhang, Dahua Lin, and
Bo Dai. Controllable mesh generation through sparse latent point
diffusion models. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[138] Chaofan Ma, Yuhuan Yang, Yanfeng Wang, Ya Zhang, and Weidi
Xie. Open-vocabulary semantic segmentation with frozen vision-
language models. In Proc. of the British Machine Vision Conf. (BMVC),
2022.

[139] Qianli Ma, Shunsuke Saito, Jinlong Yang, Siyu Tang, and Michael J
Black. Scale: Modeling clothed humans with a surface codec of ar-

191

References

ticulated local elements. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021.

[140] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili
Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen
Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proc. of the International Conf.
on Computer Vision (ICCV), 2019.

[141] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duckworth.
Nerf in the wild: Neural radiance fields for unconstrained photo
collections. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021.

[142] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In Proc. IEEE Interna-
tional Conf. on Intelligent Robots and Systems (IROS), 2015.

[143] John McCormac, Ankur Handa, Andrew Davison, and Stefan
Leutenegger. Semanticfusion: Dense 3d semantic mapping with
convolutional neural networks. In Proc. IEEE International Conf. on
Robotics and Automation (ICRA), 2017.

[144] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian
Nowozin, and Andreas Geiger. Occupancy networks: Learning 3d
reconstruction in function space. In Proc. of the Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2019.

[145] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues Hoppe,
Rohit Pandey, Noah Snavely, and Ricardo Martin-Brualla. Neural
rerendering in the wild. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[146] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Bak-
tashmotlagh, and Anders Eriksson. Implicit surface representations
as layers in neural networks. In Proc. of the International Conf. on Com-
puter Vision (ICCV), 2019.

192

References

[147] Björn Michele, Alexandre Boulch, Gilles Puy, Maxime Bucher, and
Renaud Marlet. Generative zero-shot learning for semantic segmen-
tation of 3d point clouds. In Proc. of the International Conf. on 3D Vision
(3DV), 2021.

[148] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T
Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing scenes
as neural radiance fields for view synthesis. In Proc. of the European
Conf. on Computer Vision (ECCV), 2020.

[149] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T
Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes
as neural radiance fields for view synthesis. In Proc. of the European
Conf. on Computer Vision (ECCV), 2020.

[150] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller.
Instant neural graphics primitives with a multiresolution hash encod-
ing. ACM Transactions on Graphics (ToG), 2022.

[151] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wen-
zheng Chen, Alex Evans, Thomas Müller, and Sanja Fidler. Extracting
triangular 3d models, materials, and lighting from images. In Proc. of
the Conf. on Computer Vision and Pattern Recognition (CVPR), 2022.

[152] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE
Transactions on Robotics, 2017.

[153] Zak Murez, Tarrence van As, James Bartolozzi, Ayan Sinha, Vijay
Badrinarayanan, and Andrew Rabinovich. Atlas: End-to-end 3d
scene reconstruction from posed images. In Proc. of the European Conf.
on Computer Vision (ECCV), 2020.

[154] Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, and Francis
Engelmann. Mix3d: Out-of-context data augmentation for 3d scenes.
In Proc. of the International Conf. on 3D Vision (3DV), 2021.

[155] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J Davison, Pushmeet Kohi, Jamie

193

References

Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion: Real-
time dense surface mapping and tracking. In Proc. of the International
Symposium on Mixed and Augmented Reality (ISMAR), 2011.

[156] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison.
Dtam: Dense tracking and mapping in real-time. In Proc. of the Inter-
national Conf. on Computer Vision (ICCV), 2011.

[157] Michael Niemeyer. Neural Scene Representations for 3D Reconstruction
and Generative Modeling. PhD thesis, Eberhard Karls University of
Tübingen, 2023.

[158] Michael Niemeyer and Andreas Geiger. Campari: Camera-aware de-
composed generative neural radiance fields. In Proc. of the Interna-
tional Conf. on 3D Vision (3DV), 2021.

[159] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes
as compositional generative neural feature fields. In Proc. of the Conf.
on Computer Vision and Pattern Recognition (CVPR), 2021.

[160] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas
Geiger. Occupancy flow: 4d reconstruction by learning particle dy-
namics. In Proc. of the International Conf. on Computer Vision (ICCV),
2019.

[161] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas
Geiger. Differentiable volumetric rendering: Learning implicit 3d
representations without 3d supervision. In Proc. of the Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2020.

[162] Michael Niemeyer, Lars M. Mescheder, Michael Oechsle, and An-
dreas Geiger. Differentiable volumetric rendering: Learning implicit
3d representations without 3d supervision. In Proc. of the Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

[163] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stam-
minger. Real-time 3d reconstruction at scale using voxel hashing.
ACM Trans. on Graphics (TOG), 2013.

194

References

[164] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss,
and Andreas Geiger. Texture fields: Learning texture representations
in function space. In Proc. of the International Conf. on Computer Vision
(ICCV), 2019.

[165] Michael Oechsle, Songyou Peng, and Andreas Geiger. UNISURF:
Unifying neural implicit surfaces and radiance fields for multi-view
reconstruction. In Proc. of the International Conf. on Computer Vision
(ICCV), 2021.

[166] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe,
and Steven Lovegrove. Deepsdf: Learning continuous signed dis-
tance functions for shape representation. In Proc. of the Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2019.

[167] Despoina Paschalidou, Osman Ulusoy, Carolin Schmitt, Luc
Van Gool, and Andreas Geiger. Raynet: Learning volumetric 3d re-
construction with ray potentials. In Proc. of the Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2018.

[168] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

[169] Songyou Peng, Kyle Genova, Chiyu ”Max” Jiang, Andrea Tagliasac-
chi, Marc Pollefeys, and Thomas Funkhouser. OpenScene: 3d scene
understanding with open vocabularies. In Proc. of the Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2023.

[170] Songyou Peng, Chiyu ”Max” Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A differen-
tiable poisson solver. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021.

195

References

[171] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys,
and Andreas Geiger. Convolutional occupancy networks. In Proc. of
the European Conf. on Computer Vision (ECCV), 2020.

[172] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation.
In Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2017.

[173] Charles R. Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. In
Advances in Neural Information Processing Systems (NIPS), 2017.

[174] Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen
Liu, Dan Zhang, Adrian Weller, and Bernhard Schölkopf. Control-
ling text-to-image diffusion by orthogonal finetuning. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

[175] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,
Pamela Mishkin, Jack Clark, et al. Learning transferable visual mod-
els from natural language supervision. In Proc. of the International
Conf. on Machine learning (ICML), 2021.

[176] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang,
Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu. Denseclip:
Language-guided dense prediction with context-aware prompting.
In Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2022.

[177] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilo-
NeRF: Speeding up neural radiance fields with thousands of tiny
mlps. In Proc. of the International Conf. on Computer Vision (ICCV),
2021.

[178] Edoardo Remelli, Artem Lukoianov, Stephan R Richter, Benoı̂t Guil-
lard, Timur Bagautdinov, Pierre Baque, and Pascal Fua. Meshsdf:
Differentiable iso-surface extraction. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020.

196

References

[179] Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas
Geiger. OctNetFusion: Learning depth fusion from data. In Proc.
of the International Conf. on 3D Vision (3DV), 2017.

[180] Damien Robert, Bruno Vallet, and Loic Landrieu. Learning multi-
view aggregation in the wild for large-scale 3d semantic segmenta-
tion. In Proc. of the Conf. on Computer Vision and Pattern Recognition
(CVPR), 2022.

[181] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. In Medical
Image Computing and Computer-Assisted Intervention (MICCAI), 2015.

[182] David Rozenberszki, Or Litany, and Angela Dai. Language-
grounded indoor 3d semantic segmentation in the wild. In Proc. of
the European Conf. on Computer Vision (ECCV), 2022.

[183] Martin Rünz and Lourdes Agapito. Co-fusion: Real-time segmenta-
tion, tracking and fusion of multiple objects. In Proc. IEEE Interna-
tional Conf. on Robotics and Automation (ICRA), 2017.

[184] Sara Sabour, Suhani Vora, Daniel Duckworth, Ivan Krasin, David J
Fleet, and Andrea Tagliasacchi. Robustnerf: Ignoring distractors with
robust losses. In Proc. of the Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2023.

[185] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima,
Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit func-
tion for high-resolution clothed human digitization. In Proc. of the
International Conf. on Computer Vision (ICCV), 2019.

[186] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pi-
fuhd: Multi-level pixel-aligned implicit function for high-resolution
3d human digitization. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020.

[187] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre Boulch, An-
drei Bursuc, and Renaud Marlet. Image-to-lidar self-supervised dis-

197

References

tillation for autonomous driving data. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2022.

[188] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. BAD SLAM:
bundle adjusted direct RGB-D SLAM. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019.

[189] Jonas Schult, Francis Engelmann, Theodora Kontogianni, and Bastian
Leibe. Dualconvmesh-net: Joint geodesic and euclidean convolutions
on 3d meshes. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2020.

[190] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger.
Graf: Generative radiance fields for 3d-aware image synthesis. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[191] Silvia Sellán and Alec Jacobson. Stochastic poisson surface recon-
struction. ACM Trans. on Graphics (TOG), 2022.

[192] Nur Muhammad Mahi Shafiullah, Chris Paxton, Lerrel Pinto,
Soumith Chintala, and Arthur Szlam. Clip-fields: Weakly supervised
semantic fields for robotic memory. arXiv preprint arXiv:2210.05663,
2022.

[193] Bokui Shen, Zhenyu Jiang, Christopher Choy, Leonidas J Guibas, Sil-
vio Savarese, Anima Anandkumar, and Yuke Zhu. Acid: Action-
conditional implicit visual dynamics for deformable object manipu-
lation. In Proc. Robotics: Science and Systems (RSS), 2022.

[194] Vincent Sitzmann. Self-supervised Scene Representation Learning. PhD
thesis, Stanford University, 2020.

[195] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell,
and Gordon Wetzstein. Implicit neural representations with periodic
activation functions. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020.

[196] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gor-
don Wetzstein, and Michael Zollhöfer. Deepvoxels: Learning persis-

198

References

tent 3d feature embeddings. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019.

[197] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene
representation networks: Continuous 3d-structure-aware neural
scene representations. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[198] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wij-
mans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl Ren, Shobhit
Verma, et al. The Replica dataset: A digital replica of indoor spaces.
arXiv, 2019.

[199] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard,
and Daniel Cremers. A benchmark for the evaluation of rgb-d slam
systems. In Proc. IEEE International Conf. on Intelligent Robots and Sys-
tems (IROS), 2012.

[200] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davison. iMAP:
Implicit mapping and positioning in real-time. In Proc. of the Interna-
tional Conf. on Computer Vision (ICCV), 2021.

[201] Edgar Sucar, Kentaro Wada, and Andrew Davison. Nodeslam: Neu-
ral object descriptors for multi-view shape reconstruction. In Proc. of
the International Conf. on 3D Vision (3DV), 2020.

[202] Jiaming Sun, Xi Chen, Qianqian Wang, Zhengqi Li, Hadar Averbuch-
Elor, Xiaowei Zhou, and Noah Snavely. Neural 3d reconstruction in
the wild. In ACM SIGGRAPH 2022 Conference Proceedings, 2022.

[203] Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou, and Hujun
Bao. Neuralrecon: Real-time coherent 3d reconstruction from monoc-
ular video. In Proc. of the Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2021.

[204] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard,
Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Ben-
jamin Caine, et al. Scalability in perception for autonomous driving:

199

References

Waymo open dataset. In Proc. of the Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2020.

[205] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-
Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi,
Jonathan T Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[206] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Ter-
rance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi,
Abhik Ahuja, et al. Nerfstudio: A modular framework for neural ra-
diance field development. In ACM SIGGRAPH 2023 Conference Pro-
ceedings, 2023.

[207] Chengzhou Tang and Ping Tan. Ba-net: Dense bundle adjustment
networks. In Proc. of the International Conf. on Learning Representations
(ICLR), 2018.

[208] Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and Lei Zhang.
Sa-convonet: Sign-agnostic optimization of convolutional occupancy
networks. In Proc. of the International Conf. on Computer Vision (ICCV),
2021.

[209] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree
generating networks: Efficient convolutional architectures for high-
resolution 3d outputs. In Proc. of the International Conf. on Computer
Vision (ICCV), 2017.

[210] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou.
Tangent convolutions for dense prediction in 3d. In Proc. of the Conf.
on Computer Vision and Pattern Recognition (CVPR), 2018.

[211] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li,
Vladlen Koltun, and Thomas Brox. What do single-view 3d recon-
struction networks learn? In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

200

References

[212] Zachary Teed and Jia Deng. Deepv2d: Video to depth with differ-
entiable structure from motion. In Proc. of the International Conf. on
Learning Representations (ICLR), 2019.

[213] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monoc-
ular, stereo, and rgb-d cameras. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2021.

[214] Zachary Teed and Jia Deng. Tangent space backpropagation for 3d
transformation groups. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021.

[215] Nikolaos Tsagkas, Oisin Mac Aodha, and Chris Xiaoxuan Lu. Vl-
fields: Towards language-grounded neural implicit spatial represen-
tations. In Proc. IEEE International Conf. on Robotics and Automation
(ICRA), 2023.

[216] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus
Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas Brox. Demon:
Depth and motion network for learning monocular stereo. In Proc.
of the Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[217] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using
t-sne. JMLR, 2008.

[218] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias,
François Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouil-
lart, and Tony Yu. scikit-image: image processing in python. PeerJ,
2014.

[219] Vibhav Vineet, Ondrej Miksik, Morten Lidegaard, Matthias Nießner,
Stuart Golodetz, Victor A Prisacariu, Olaf Kähler, David W Mur-
ray, Shahram Izadi, Patrick Pérez, et al. Incremental dense semantic
stereo fusion for large-scale semantic scene reconstruction. In Proc.
IEEE International Conf. on Robotics and Automation (ICRA), 2015.

[220] Johanna Wald, Helisa Dhamo, Nassir Navab, and Federico Tombari.
Learning 3d semantic scene graphs from 3d indoor reconstructions.

201

References

In Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2020.

[221] Dan Wang, Xinrui Cui, Xun Chen, Zhengxia Zou, Tianyang Shi, Sep-
timiu Salcudean, Z Jane Wang, and Rabab Ward. Multi-view 3d re-
construction with transformers. In Proc. of the International Conf. on
Computer Vision (ICCV), 2021.

[222] Hengyi Wang, Jingwen Wang, and Lourdes Agapito. Co-slam: Joint
coordinate and sparse parametric encodings for neural real-time
slam. In Proc. of the Conf. on Computer Vision and Pattern Recognition
(CVPR), 2023.

[223] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiaolong
Wang. Synthesizing long-term 3d human motion and interaction in
3d scenes. In Proc. of the Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021.

[224] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and
Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh models from single
rgb images. In Proc. of the European Conf. on Computer Vision (ECCV),
2018.

[225] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura,
and Wenping Wang. Neus: Learning neural implicit surfaces by vol-
ume rendering for multi-view reconstruction. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[226] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin
Tong. O-cnn: Octree-based convolutional neural networks for 3d
shape analysis. ACM Transactions on Graphics, 2017.

[227] Yiqun Wang, Ivan Skorokhodov, and Peter Wonka. Hf-neus: Im-
proved surface reconstruction using high-frequency details. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2022.

[228] Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang, Yilun
Wang, Hang Zhao, and Justin Solomon. Detr3d: 3d object detection

202

References

from multi-view images via 3d-to-2d queries. In Proc. Conf. on Robot
Learning (CoRL), 2022.

[229] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bron-
stein, and Justin M Solomon. Dynamic graph cnn for learning on
point clouds. ACM Transactions on Graphics, 2019.

[230] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian
Prisacariu. Nerf–: Neural radiance fields without known camera pa-
rameters. arXiv, 2021.

[231] Silvan Weder, Johannes L Schonberger, Marc Pollefeys, and Martin R
Oswald. Neuralfusion: Online depth fusion in latent space. In Proc.
of the Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[232] Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu. Pixel2mesh++:
Multi-view 3d mesh generation via deformation. In Proc. of the Inter-
national Conf. on Computer Vision (ICCV), 2019.

[233] T. Whelan, J. B. McDonald, M. Kaess, M. Fallon, H. Johannsson, and
J. J. Leonard. Kintinuous: Spatially Extended KinectFusion. In RSS
’12 Workshop on RGB-D: Advanced Reasoning with Depth Cameras, 2012.

[234] Thomas Whelan, Stefan Leutenegger, R Salas-Moreno, Ben Glocker,
and Andrew Davison. Elasticfusion: Dense slam without a pose
graph. In Proc. Robotics: Science and Systems (RSS), 2015.

[235] Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin, Joan
Bruna, Sanja Fidler, and Or Litany. Neural fields as learnable ker-
nels for 3d reconstruction. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022.

[236] Francis Williams, Teseo Schneider, Claudio Silva, Denis Zorin, Joan
Bruna, and Daniele Panozzo. Deep geometric prior for surface recon-
struction. In Proc. of the Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

[237] Francis Williams, Matthew Trager, Joan Bruna, and Denis Zorin. Neu-
ral splines: Fitting 3d surfaces with infinitely-wide neural networks.

203

References

In Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[238] Adrian Wolny. 3d u-net model for volumetric semantic segmenta-
tion written in pytorch. https://github.com/wolny/pytorch-3dunet,
2020.

[239] Markus Worchel, Rodrigo Diaz, Weiwen Hu, Oliver Schreer, Ingo
Feldmann, and Peter Eisert. Multi-view mesh reconstruction with
neural deferred shading. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022.

[240] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman,
and Josh Tenenbaum. Marrnet: 3d shape reconstruction via 2.5 d
sketches. In Advances in Neural Information Processing Systems (NIPS),
2017.

[241] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang,
William T Freeman, and Joshua B Tenenbaum. Learning shape pri-
ors for single-view 3d completion and reconstruction. In Proc. of the
European Conf. on Computer Vision (ECCV), 2018.

[242] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convo-
lutional networks on 3d point clouds. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019.

[243] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep rep-
resentation for volumetric shapes. In Proc. of the Conf. on Computer
Vision and Pattern Recognition (CVPR), 2015.

[244] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and
Shengping Zhang. Pix2vox: Context-aware 3d reconstruction from
single and multi-view images. In Proc. of the International Conf. on
Computer Vision (ICCV), 2019.

[245] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan,
Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann,

204

https://github.com/wolny/pytorch-3dunet

References

and Srinath Sridhar. Neural fields in visual computing and beyond.
In Computer Graphics Forum, 2022.

[246] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel,
Jan Kautz, and Xiaolong Wang. Groupvit: Semantic segmentation
emerges from text supervision. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022.

[247] Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong Wang,
and Shalini De Mello. Open-vocabulary panoptic segmentation with
text-to-image diffusion models. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2023.

[248] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ul-
rich Neumann. Disn: Deep implicit surface network for high-quality
single-view 3d reconstruction. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

[249] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomı́r Mech, and Ul-
rich Neumann. DISN: deep implicit surface network for high-quality
single-view 3d reconstruction. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

[250] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spider-
cnn: Deep learning on point sets with parameterized convolutional
filters. In Proc. of the European Conf. on Computer Vision (ECCV), 2018.

[251] Xu Yan. Pytorch implementation of pointnet and pointnet++. https:
//github.com/yanx27/Pointnet Pointnet2 pytorch, 2020.

[252] Zike Yan, Yuxin Tian, Xuesong Shi, Ping Guo, Peng Wang, and Hong-
bin Zha. Continual neural mapping: Learning an implicit scene rep-
resentation from sequential observations. In Proc. of the International
Conf. on Computer Vision (ICCV), 2021.

[253] Jihan Yang, Runyu Ding, Zhe Wang, and Xiaojuan Qi. Regionplc: Re-
gional point-language contrastive learning for open-world 3d scene
understanding. arXiv preprint arXiv:2304.00962, 2023.

205

https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch

References

[254] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cremers.
D3vo: Deep depth, deep pose and deep uncertainty for monocular
visual odometry. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), 2020.

[255] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume ren-
dering of neural implicit surfaces. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[256] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon,
Basri Ronen, and Yaron Lipman. Multiview neural surface recon-
struction by disentangling geometry and appearance. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[257] Dongqiangzi Ye, Zixiang Zhou, Weijia Chen, Yufei Xie, Yu Wang,
Panqu Wang, and Hassan Foroosh. Lidarmultinet: Towards a
unified multi-task network for lidar perception. arXiv preprint
arXiv:2209.09385, 2022.

[258] Jianglong Ye, Yuntao Chen, Naiyan Wang, and Xiaolong Wang. Gifs:
Neural implicit function for general shape representation. In Proc. of
the Conf. on Computer Vision and Pattern Recognition (CVPR), 2022.

[259] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto Rodriguez,
Phillip Isola, and Tsung-Yi Lin. inerf: Inverting neural radiance fields
for pose estimation. In Proc. IEEE International Conf. on Intelligent
Robots and Systems (IROS), 2021.

[260] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and An-
dreas Geiger. MonoSDF: Exploring monocular geometric cues for
neural implicit surface reconstruction. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2022.

[261] Nir Zabari and Yedid Hoshen. Open-vocabulary semantic segmenta-
tion using test-time distillation. In ECCVW, 2022.

[262] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In Proc. of the European Conf. on Computer
Vision (ECCV), 2014.

206

References

[263] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany,
Sanja Fidler, and Karsten Kreis. Lion: Latent point diffusion models
for 3d shape generation. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[264] Yihan Zeng, Chenhan Jiang, Jiageng Mao, Jianhua Han, Chaoqiang
Ye, Qingqiu Huang, Dit-Yan Yeung, Zhen Yang, Xiaodan Liang, and
Hang Xu. Clip2: Contrastive language-image-point pretraining from
real-world point cloud data. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2023.

[265] Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ra-
manan. Ners: Neural reflectance surfaces for sparse-view 3d recon-
struction in the wild. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021.

[266] Jingyang Zhang, Yao Yao, Shiwei Li, Tian Fang, David McKinnon,
Yanghai Tsin, and Long Quan. Critical regularizations for neural sur-
face reconstruction in the wild. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022.

[267] Jingyang Zhang, Yao Yao, and Long Quan. Learning signed distance
field for multi-view surface reconstruction. In Proc. of the International
Conf. on Computer Vision (ICCV), 2021.

[268] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun.
Nerf++: Analyzing and improving neural radiance fields. arXiv,
2020.

[269] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable
convolutional neural networks. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2018.

[270] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao,
Bin Cui, Yu Qiao, Peng Gao, and Hongsheng Li. Pointclip: Point
cloud understanding by clip. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022.

207

References

[271] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao,
Bin Cui, Yu Qiao, Peng Gao, and Hongsheng Li. Pointclip: Point
cloud understanding by clip. In Proc. of the Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022.

[272] Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh Tenen-
baum, Bill Freeman, and Jiajun Wu. Learning to reconstruct shapes
from unseen classes. Advances in Neural Information Processing Systems
(NIPS), 2018.

[273] Wenbin Zhao, Jiabao Lei, Yuxin Wen, Jianguo Zhang, and Kui Jia.
Sign-agnostic implicit learning of surface self-similarities for shape
modeling and reconstruction from raw point clouds. In Proc. of the
Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[274] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari.
3d point capsule networks. In Proc. of the Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[275] Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and Andrew
Davison. Scenecode: Monocular dense semantic reconstruction us-
ing learned encoded scene representations. In Proc. of the Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019.

[276] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels
from clip. In Proc. of the European Conf. on Computer Vision (ECCV),
2022.

[277] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox. Deep-
tam: Deep tracking and mapping. In Proc. of the European Conf. on
Computer Vision (ECCV), 2018.

[278] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern
library for 3D data processing. arXiv:1801.09847, 2018.

[279] Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of 10,000
3d-printing models. arXiv preprint arXiv:1605.04797, 2016.

[280] Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R.
Oswald, Andreas Geiger, and Marc Pollefeys. NICER-SLAM: Neural

208

References

implicit scene encoding for rgb slam. In Proc. of the International Conf.
on 3D Vision (3DV), 2024.

[281] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao,
Zhaopeng Cui, Martin R. Oswald, and Marc Pollefeys. NICE-SLAM:
Neural implicit scalable encoding for slam. In Proc. of the Conf. on
Computer Vision and Pattern Recognition (CVPR), 2022.

209

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 Motivation
	1.2 Research Questions and Challenges
	1.3 Contributions
	1.3.1 3D Reconstruction with Scalable Neural Representations
	1.3.2 3D Reconstruction with a Differentiable Poisson Solver
	1.3.3 SLAM with Scalable Neural Representations
	1.3.4 3D Scene Understanding with Large Vision Language Models

	1.4 Outline
	1.5 Publications

	Background
	2.1 3D Shape Representations
	2.1.1 Voxel Grids
	2.1.2 Point Clouds
	2.1.3 Polygon Meshes
	2.1.4 Neural Implicit Representations

	2.2 3D Reconstruction from Point Clouds
	2.2.1 Optimization-Based Approaches
	2.2.2 Learning-Based Approaches

	2.3 3D Reconstruction from Multi-view Images
	2.3.1 Approaches with Surface Rendering
	2.3.2 Approaches with Volume Rendering

	2.4 3D Scene Understanding
	2.4.1 Vision-Language Foundation Models
	2.4.2 Open-Vocabulary 3D Scene Understanding

	3D Reconstruction with Scalable Neural Representations
	3.1 Introduction
	3.2 Method
	3.2.1 Encoder
	3.2.2 Decoder
	3.2.3 Occupancy Prediction
	3.2.4 Training and Inference
	3.2.5 Network Architectures
	3.2.6 Implementation Details of Fully-Convolutional Model

	3.3 Experiments
	3.3.1 Object-Level Reconstruction
	3.3.2 Scene-Level Reconstruction
	3.3.3 Ablation Study
	3.3.4 Reconstruction on Real-World Datasets

	3.4 Discussion

	3D Reconstruction with a Differentiable Poisson Solver
	4.1 Introduction
	4.2 Method
	4.2.1 Differentiable Poisson Solver
	4.2.2 SAP for Optimization-based 3D Reconstruction
	4.2.3 SAP for Learning-based 3D Reconstruction

	4.3 Experiments
	4.3.1 Optimization-based 3D Reconstruction
	4.3.2 Ablation Study for Optimization-based Setting
	4.3.3 Learning-based Reconstruction
	4.3.4 Ablation Study for Learning-based Setting

	4.4 Conclusion and Discussion

	SLAM with Scalable Scene Representations
	5.1 Introduction
	5.2 Related Work
	5.2.1 Dense Visual SLAM
	5.2.2 SLAM with Neural Implicit Representations

	5.3 Method
	5.3.1 Hierarchical Scene Representation
	5.3.2 Depth and Color Rendering
	5.3.3 Mapping and Tracking
	5.3.4 Initialization for Hierarchical Feature Grids
	5.3.5 Keyframe Selection
	5.3.6 Frustum Feature Selection

	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 Evaluation of Mapping and Tracking
	5.4.3 Performance Analysis
	5.4.4 Ablation Study

	5.5 Conclusion and Discussion

	3D Scene Understanding with Large Vision Language Models
	6.1 Introduction
	6.2 Related Work
	6.3 Method
	6.3.1 Image Feature Fusion
	6.3.2 3D Distillation
	6.3.3 2D-3D Feature Ensemble
	6.3.4 Inference
	6.3.5 Implementation Details

	6.4 Experiments
	6.4.1 Comparisons
	6.4.2 Ablation Studies & Analysis

	6.5 Applications
	6.6 Conclusion and Discussion

	Conclusion
	7.1 Core Contributions & Applications
	7.2 Future Work

	Appendix
	A.1 Derivations for Differentiable Poisson Solver
	A.1.1 Point Rasterization
	A.1.2 Spectral Methods for Solving PSR

	References

