Towards Practical Applications of NeRF for Novel View Synthesis & 3D Reconstruction

Songyou Peng

Graphics And Mixed Environment Seminar (GAMES) 21.06.2021

Collaborators

Michael Oechsle

Yiyi Liao

Andreas Geiger

KiloNeRF: Speeding up NeRF with Thousands of Tiny MLPs

Christian Reiser, Songyou Peng, Yiyi Liao, Andreas Geiger

https://arxiv.org/abs/2103.13744

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

Michael Oechsle, Songyou Peng, Andreas Geiger

https://arxiv.org/abs/2104.10078

NeRF is awesome!

But some problems still exist...

Problem 1: NeRF's inference time is super long

NeRF 800x800

56 s

😢 Not suitable for real-world applications, e.g. VR/AR

* Test with NVIDIA GTX 1080 Ti

Problem 1: NeRF's inference time is super long

Contraction of the second seco

* Tested with NVIDIA GTX 1080 Ti

Problem 2: NeRF's underlying geometry is poor

Rendering

NeRF Geometry

Problem 2: NeRF's underlying geometry is poor

Rendering

NeRF Geometry

UNISURF Geometry

😊 UNISURF unifies NeRF & surface rendering for accurate reconstruction

Speeding up NeRF with Thousands of Tiny MLPs

Key Idea

- Partition a scene into a 16³ uniform grid
- Each grid cell is represented by a tiny MLP

Key Idea

- Partition a scene into a 16³ uniform grid
- Each grid cell is represented by a tiny MLP

87x reduction in FLOPs!

* FLOP: floating points operations

Training:

- 1. Distill a trained NeRF model into our KiloNeRF model
 - Randomly sampled points, their predicted alpha & color values should match!
- 2. Fine-tune the KiloNeRF model on training images

Training:

- 1. Distill a trained NeRF model into our KiloNeRF model
 - Randomly sampled points, their predicted alpha & color values should match!
- 2. Fine-tune the KiloNeRF model on training images

Inference:

- 1. Empty Space Skipping (ESS) with a pre-computed 256³ occupancy grid
- 2. Early Ray Termination (ERT): when transmittance < ε, stop!
- 3. Evaluate tiny MLPs in parallel

Method	Render time \downarrow	Speedup ↑	
NeRF	56185 ms	_	
NeRF + ESS + ERT	788 ms	71	
KiloNeRF	22 ms	2554	

Results

Quantitative Results

Resolution		$\frac{\text{BlendedMVS}}{768 \times 576}$	Synthetic-NeRF 800 × 800	Synthetic-NSVF 800 × 800	Tanks & Temples 1920 × 1080
LPIPS ↓	NeRF	0.07	0.08	0.04	0.11
	KiloNeRF	0.06	0.03	0.02	0.09
Render time (milliseconds) \downarrow	NeRF	37266	56185	56185	182671
	KiloNeRF	30	26	26	91
Speedup over NeRF ↑	KiloNeRF	1258	2165	2167	2002

Comparison to concurrent NeRF speed-up papers

Туре	Neural	Tabulation-based			
	KiloNeRF	PlenOctree	SNeRG	FastNeRF	
GPU Memory Consumption	< 100 MB	1930 MB	3442 MB	7830 MB	

\Rightarrow KiloNeRF has a larger potential for large-scale NVS

Stay tuned! We will release a blog post providing more thorough comparisons.

Conclusion

- Speed up NeRF significantly (~ 2000x) without loss of quality
- Compared to concurrent works, KiloNeRF requires much less GPU memory
- Can be plugged into almost all coordinate-based networks

Limitations

- KiloNeRF can only work on bounded scenes
 - Efficient data structures (e.g. Octree) could help to scale to larger scenes
- Expensive training time
 - Combine with PixelNeRF or MVSNeRF can help learning fast

Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

The underlying geometry of NeRF (volume rendering) is poor [1, 2]

Rendering

NeRF Geometry

[1] Kellnhofer et al.: Neural Lumigraph Rendering, CVPR 2021[2] Azinovic et al.: Neural RGB-D Surface Reconstruction, 2021

Surface rendering methods have great geometry, but require object masks

Rendering

NeRF Geometry

IDR Geometry [1]

[1] Yariv et al.: Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance, NeurIPS 2020

Can we obtain accurate geometry without the need of object masks?

Can we obtain accurate geometry without the need of object masks?

We unify radiance fields and implicit surface models, enabling both **volume rendering** and **surface rendering**

Early Stage: Volume rendering like in NeRF, but with occupancies

NeRF rendering:
$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} \alpha_i(\mathbf{x}_i) \prod_{j < i} (1 - \alpha_j(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
 $\alpha_i(\mathbf{x}) = 1 - \exp(-\sigma(\mathbf{x}) \delta_i)$

Early Stage: Volume rendering like in NeRF, but with occupancies

NeRF rendering:
$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} \alpha_i(\mathbf{x}_i) \prod_{j < i} (1 - \alpha_j(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
 $\alpha_i(\mathbf{x}) = 1 - \exp(-\sigma(\mathbf{x}) \delta_i)$

Assuming a solid object, the alpha is just a continuous occupancy field

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} o(\mathbf{x}_i) \prod_{j < i} (1 - o(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$

Early Stage: Volume rendering like in NeRF, but with occupancies

NeRF rendering:
$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} \alpha_i(\mathbf{x}_i) \prod_{j < i} (1 - \alpha_j(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
 $\alpha_i(\mathbf{x}) = 1 - \exp(-\sigma(\mathbf{x}) \delta_i)$

Assuming a solid object, the alpha is just a continuous occupancy field

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} o(\mathbf{x}_i) \prod_{j < i} (1 - o(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
1 for the first occupied sample
0 for all other samples

➡ Sampled points near to the surface have larger influence to the predicted color

Later Stage: Find surface points, decrease the range of volume rendering

a) Find the surface point

Later Stage: Find surface points, decrease the range of volume rendering

Later Stage: Find surface points, decrease the range of volume rendering

Loss Function

a) Image reconstruction loss

$$\mathcal{L}_{rec} = \sum_{\mathbf{r} \in \mathcal{R}} \|\hat{C}_v(\mathbf{r}) - C(\mathbf{r})\|_1$$

b) Surface smoothness regularization

$$\mathcal{L}_{reg} = \sum_{\mathbf{x}_s \in \mathcal{S}} \|\mathbf{n}(\mathbf{x}_s) - \mathbf{n}(\mathbf{x}_s + \boldsymbol{\epsilon})\|_2$$

Results

Results on DTU

With Masks

Without Masks

Results on Indoor Scene

GT View

NeRF

UNISURF

Results on BlendedMVS

Conclusion

- Unify NeRF and implicit surfaces for 3D reconstruction from multi-view images
- Accurate reconstruction without the need of masks

Limitations

- Hard to reconstruct textureless regions
- Slow inference / meshing time
 - Our latest work to tackle this point

Peng et al.: Shape As Points: A Differentiable Poisson Solver. <u>https://arxiv.org/abs/2106.03452</u>

More NeRF-related Works from Our Group

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis Katja Schwarz*, Yiyi Liao*, Michael Niemeyer and Andreas Geiger NeurIPS 2020

https://github.com/autonomousvision/graf

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Michael Niemeyer and Andreas Geiger

CVPR 2021 (Best Paper Award)

https://github.com/autonomousvision/giraffe

Thank you!