

Depth Super-Resolution Meets Uncalibrated Photometric Stereo

Songyou PENG Bjoern HAEFNER Yvain QUEAU Daniel CREMERS

Computer Vision Group

Technical University of Munich

ICCV 2017 Color and Photometry in Computer Vision Workshop

Outline

1 Introduction

- 2 Background
- 3 Methodology
- 4 Evaluation and Results

5 Conclusion

Outline

1 Introduction

- 2 Background
- 3 Methodology
- 4 Evaluation and Results

5 Conclusion

Problem Statement

Example: RGB-D data from ASUS Xtion Pro Live

Input RGB image

Input depth

+ Good quality+ High resolution

Noisy & missing areasLow resolution

Goal

Input RGB image

Input depth

Refined depth

Objective:

Use high-resolution photometric clues in the RGB image to turn the low-resolution depth maps into a refined, high resolution one

Contribution

Propose a novel variational model to:

- disambiguate depth super-resolution through high-resolution photometric clues;
- disambiguate uncalibrated photometric stereo through low-resolution depth cues.

Outline

1 Introduction

- 2 Background
- 3 Methodology
- 4 Evaluation and Results

5 Conclusion

Depth Super-Resolution

$$\mathbf{z}_0^i = \mathbf{K}\mathbf{z} + \varepsilon_{\mathbf{z}}^i, \ \forall i \in \{1, \dots, n\}$$

 z_0^i : input LR depth maps z: output HR depth map *K*: down-sampling kernel ε_z^i : noise ~ $\mathcal{N}(0, \sigma_z^2)$

$$\min_{\boldsymbol{z}} \mathcal{R}_{\boldsymbol{z}}(\boldsymbol{z}) + \frac{1}{2n} \sum_{i=1}^{n} \|\boldsymbol{K}\boldsymbol{z} - \boldsymbol{z}_{0}^{i}\|_{\ell^{2}}^{2}$$

[Grosse et al., ICCV 2009]

Photometric Stereo

$$\boldsymbol{l}^{i} = \rho \, \boldsymbol{l}^{i} \cdot \begin{bmatrix} \mathbf{n}(\boldsymbol{z}) \\ 1 \end{bmatrix} + \boldsymbol{\varepsilon}_{l}^{i}, \, \forall i \in \{1, \dots, \boldsymbol{n}\}$$

- I^{*i*}: images under various lightings
- \mathbf{l}^i : lighting vector \mathbb{R}^4
- ρ : albedo / reflectance
- $\mathbf{n}(\mathbf{z})$: surface normal

$$\min_{\mathbf{z}} \mathcal{R}_{\mathbf{I}}(\mathbf{z}) + \frac{1}{2n} \sum_{i=1}^{n} \|\rho \mathbf{l}^{i} \cdot \begin{bmatrix} \mathbf{n}(\mathbf{z}) \\ 1 \end{bmatrix} - \mathbf{I}^{i} \|_{\ell^{2}}^{2}$$

Depth Super-Resolution

$$\mathbf{z}_0^i = \mathbf{K}\mathbf{z} + \varepsilon_{\mathbf{z}}^i, \ \forall i \in \{1, \dots, n\}$$

- z_0^i : input LR depths
- z: output HR depth
- $\begin{aligned} & \textit{K: down-sampling kernal} \\ & \varepsilon_{\textit{z}}^{i} \text{: noise} \sim \mathcal{N}(0, \sigma_{\textit{z}}^{2}) \end{aligned}$

$$\min_{\mathbf{z}} \mathcal{R}_{\mathbf{z}}(\mathbf{z}) + \frac{1}{2n} \sum_{i=1}^{n} \| \mathbf{K}\mathbf{z} - \mathbf{z}_{0}^{i} \|_{\ell^{2}}^{2}$$

Photometric Stereo

$$\boldsymbol{l}^{i} = \rho \, \mathbf{l}^{i} \cdot \begin{bmatrix} \mathbf{n}(\boldsymbol{z}) \\ 1 \end{bmatrix} + \boldsymbol{\varepsilon}_{\boldsymbol{l}}^{i}, \, \forall i \in \{1, \dots, \boldsymbol{n}\}$$

- I^{*i*}: images under various lightings
- \mathbf{l}^i : lighting vector \mathbb{R}^4
- ρ : albedo / reflectance
- $\mathbf{n}(\mathbf{z})$: surface normal

$$\min_{\mathbf{z}} \mathcal{R}_{\mathbf{I}}(\mathbf{z}) + \frac{1}{2n} \sum_{i=1}^{n} \|\rho \mathbf{l}^{i} \cdot \begin{bmatrix} \mathbf{n}(\mathbf{z}) \\ 1 \end{bmatrix} - \mathbf{I}^{i} \|_{\ell^{2}}^{2}$$

Depth Super-Resolution

$$\mathbf{z}_0^i = \mathbf{K}\mathbf{z} + \varepsilon_{\mathbf{z}}^i, \ \forall i \in \{1, \dots, n\}$$

- z_0^i : input LR depths
- z: output HR depth
- $$\label{eq:kinetic} \begin{split} \mathbf{K}\!\!: & \text{down-sampling kernal} \\ & \varepsilon^i_{\mathbf{z}} \!\!: \, \text{noise} \sim \mathcal{N}(0, \sigma_{\mathbf{z}}{}^2) \end{split}$$

Photometric Stereo

$$\boldsymbol{l}^{i} = \rho \, \mathbf{l}^{i} \cdot \begin{bmatrix} \mathbf{n}(\boldsymbol{z}) \\ 1 \end{bmatrix} + \boldsymbol{\varepsilon}_{\boldsymbol{l}}^{i}, \; \forall i \in \{1, \dots, \boldsymbol{n}\}$$

- I^{*i*}: images under various lightings
- $\mathbf{l}^{\textit{i}}:$ lighting vector \mathbb{R}^4
- ρ : albedo / reflectance
- $\mathbf{n}(\mathbf{z})$: surface normal

$$\min_{\mathbf{z}} \mathcal{R}_{\mathbf{z}}(\mathbf{z}) + \frac{1}{2n} \sum_{i=1}^{n} \|\mathbf{K}\mathbf{z} - \mathbf{z}_{0}^{i}\|_{\ell^{2}}^{2} \qquad \min_{\mathbf{z}} \mathcal{R}_{l}(\mathbf{z}) + \frac{1}{2n} \sum_{i=1}^{n} \|\rho \mathbf{l}^{i} \cdot \begin{bmatrix} \mathbf{n}(\mathbf{z}) \\ 1 \end{bmatrix} - I^{i}\|_{\ell^{2}}^{2}$$
Proposed Model:
$$\min_{\mathbf{z}} \frac{1}{2n} \sum_{i=1}^{n} \left\{ \|\mathbf{K}\mathbf{z} - \mathbf{z}_{0}^{i}\|_{\ell^{2}}^{2} + \lambda \|\rho \mathbf{l}^{i} \cdot \begin{bmatrix} \mathbf{n}(\mathbf{z}) \\ 1 \end{bmatrix} - I^{i}\|_{\ell^{2}}^{2} \right\}$$

Outline

1 Introduction

- 2 Background
- 3 Methodology
- 4 Evaluation and Results

5 Conclusion

Methodology

With (i, \star, \mathbf{p}) the indices of images, channel and pixel,

$$I_{\star}^{i}(\mathbf{p}) = \rho_{\star}(\mathbf{p}) \mathbf{l}_{\star}^{i} \cdot \begin{bmatrix} \mathbf{n}(\mathbf{p}) \\ 1 \end{bmatrix} + \varepsilon_{\star}^{i}(\mathbf{p})$$

Methodology

With (i, \star, \mathbf{p}) the indices of images, channel and pixel,

$$\left. \begin{array}{l} l_{\star}^{i}(\mathbf{p}) = \rho_{\star}(\mathbf{p}) \, l_{\star}^{i} \cdot \begin{bmatrix} \mathbf{n}(\mathbf{p}) \\ 1 \end{bmatrix} + \varepsilon_{\star}^{i}(\mathbf{p}) \\ \mathbf{n}(\mathbf{p}) = \frac{1}{d(\mathbf{z})(\mathbf{p})} \begin{bmatrix} \mathbf{f} \, \nabla \mathbf{z}(\mathbf{p}) \\ -\mathbf{z}(\mathbf{p}) - \nabla \mathbf{z}(\mathbf{p}) \cdot (\mathbf{p} - \mathbf{p}^{0}) \end{bmatrix} \right\}$$

f: focal length \mathbf{p}^0 : principal point d(z): normalizer

Methodology

With (i, \star, \mathbf{p}) the indices of images, channel and pixel,

$$\begin{split} & I^{i}_{\star}(\mathbf{p}) = \rho_{\star}(\mathbf{p}) \, \mathbf{l}^{i}_{\star} \cdot \begin{bmatrix} \mathbf{n}(\mathbf{p}) \\ 1 \end{bmatrix} + \varepsilon^{i}_{\star}(\mathbf{p}) \\ & \mathbf{n}(\mathbf{p}) = \frac{1}{d(\mathbf{z})(\mathbf{p})} \begin{bmatrix} \mathbf{f} \nabla \mathbf{z}(\mathbf{p}) \\ -\mathbf{z}(\mathbf{p}) - \nabla \mathbf{z}(\mathbf{p}) \cdot (\mathbf{p} - \mathbf{p}^{0}) \end{bmatrix} \end{bmatrix} \mathbf{A}^{i}(\mathbf{z}, \boldsymbol{\rho}, \mathbf{l}^{i})^{\top} \begin{bmatrix} \nabla \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \mathbf{b}^{i}(\boldsymbol{\rho}, \mathbf{l}^{i}) + \varepsilon^{i} \end{split}$$

f: focal length \mathbf{p}^0 : principal point d(z): normalizer

Proposed Variational Model

Here we have:

- depth super-resolution cue: $\mathbf{z}_0^i = \mathbf{K}\mathbf{z} + \varepsilon_{\mathbf{z}}^i, \forall i \in \{1, \dots, n\}$
- photometric stereo cue: $\mathbf{A}^{i}(\mathbf{z}, \boldsymbol{\rho}, \mathbf{l}^{i})^{\top} \begin{bmatrix} \nabla \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \mathbf{b}^{i}(\boldsymbol{\rho}, \mathbf{l}^{i}) + \varepsilon^{i}$

The final variational model is acquired from maximum likelihood:

$$\min_{\mathbf{z},\boldsymbol{\rho},\{\mathbf{l}^i\}_i} \left\{ \sum_{i=1}^n \|\mathbf{K}\mathbf{z} - \mathbf{z}_0^i\|_{\ell^2}^2 + \lambda \sum_{i=1}^n \left\| \mathbf{A}^i(\mathbf{z},\boldsymbol{\rho},\mathbf{l}^i)^\top \begin{bmatrix} \nabla \mathbf{z} \\ \mathbf{z} \end{bmatrix} - \mathbf{b}^i(\boldsymbol{\rho},\mathbf{l}^i) \right\|_{\ell^2}^2 \right\}$$

Alternating Optimization Workflow

$$\min_{\mathbf{z},\boldsymbol{\rho},\{\mathbf{l}^{i}\}_{i}} \left\{ \sum_{i=1}^{n} \|\mathbf{K}\mathbf{z} - \mathbf{z}_{0}^{i}\|_{\ell^{2}}^{2} + \lambda \sum_{i=1}^{n} \left\|\mathbf{A}^{i}(\mathbf{z},\boldsymbol{\rho},\mathbf{l}^{i})^{\top} \begin{bmatrix} \nabla \mathbf{z} \\ \mathbf{z} \end{bmatrix} - \mathbf{b}^{i}(\boldsymbol{\rho},\mathbf{l}^{i}) \right\|_{\ell^{2}}^{2} \right\}$$

Alternating Optimization Workflow

Outline

1 Introduction

- 2 Background
- 3 Methodology
- 4 Evaluation and Results

5 Conclusion

Synthetic Data

3D shape

Ground truth HR depth

LR noisy depth

HR albedo map¹

HR photometric stereo images

¹Source: https://mtex-toolbox.github.io/files/doc/EBSDSpatialPlots.html

S. Peng, B. Haefner, Y. Quéau, D. Cremers: Depth Super-Resolution Meets Uncalibrated Photometric Stereo

50

Quantitative Evaluation

Number of images

Parameter tuning

$$\min_{\boldsymbol{z},\boldsymbol{\rho},\{\mathbf{l}^i\}_i} \left\{ \sum_{i=1}^n \|\boldsymbol{\mathcal{K}}\boldsymbol{z} - \boldsymbol{z}_0^i\|_{\ell^2}^2 + \lambda \sum_{i=1}^n \left\| \mathbf{A}^i(\boldsymbol{z},\boldsymbol{\rho},\mathbf{l}^i)^\top \begin{bmatrix} \nabla \boldsymbol{z} \\ \boldsymbol{z} \end{bmatrix} - \mathbf{b}^i(\boldsymbol{\rho},\mathbf{l}^i) \right\|_{\ell^2}^2 \right\}$$

 $\lambda \in [10^{-2}, 10^1]$ provide satisfactory results

 $\label{eq:mmetric} \begin{array}{l} \mbox{RMSE} = 0.0728 \\ \mbox{MAE} = 34.4129 \\ \mbox{Depth super-resolution with TV} \end{array}$

RMSE = 0.9199

MAE = 41.8041

LDR Photometric Stereo [Papadhimitri and Favaro, *IJCV* 2014]

RMSE = 0.1655 MAE = 38.9316 RGBD-Fusion [Or-El et al., *CVPR* 2015]

RMSE = 0.0314MAE = 1.45280Ours

	RMSE	MAE
Input	0.0579	65.7150
Depth SR	0.0728	34.4129
LDR PS	0.0919	41.8041
RGBD-Fusion	0.1655	38.9316
Ours	0.0314	1.45280

Outline

1 Introduction

- 2 Background
- 3 Methodology
- 4 Evaluation and Results

5 Conclusion

Conclusions and Future work

- We proposed a novel variational framework for joint depth super-resolution and reflectance/light estimation
- Our method can be used out-of-the-box with common devices
- Theoretical analysis of this approach will be the next step

Data and codes are available on https://github.com/pengsongyou/SRmeetsPS

Depth Super-Resolution Meets Uncalibrated Photometric Stereo

Songyou PENG Bjoern HAEFNER Yvain QUEAU Daniel CREMERS

Computer Vision Group

Technical University of Munich

ICCV 2017 Color and Photometry in Computer Vision Workshop

Shape from shading ambiguity

Generalized Bas-Relief (GBR)

[belhumeur et al., IJCV 99]

S. Peng, B. Haefner, Y. Quéau, D. Cremers: Depth Super-Resolution Meets Uncalibrated Photometric Stereo