High Quality Shape from a RGB-D Camera using Photometric Stereo

Songyou Peng Yvain Quéau Daniel Cremers
Computer Vision Group, Technical University of Munich

PROBLEM STATEMENT
Depth images from RGB-D cameras:
- Noisy
- No fine details
- Missing areas
Goal: Improve the quality of depths

CONTRIBUTIONS
- Propose a novel RGB ratio model to solve the nonlinearity and achieve similar accuracy to the previous methods.
- Introduce a robust multi-light method which outperforms the state-of-the-art approaches without any regularization term.
- First depth super-resolution method based on photometric stereo.

REFLECTANCE MODEL
Lambertian Reflectance Model

Intensity \(I \) [1]
Albedo \(\rho \)
Shading \(S \)

\(I = \rho S = \rho I^\top n \)

\(I \): light direction, \(n \): surface normal.
1st-order Spherical Harmonics (SH)

\(I = \rho (I^\top n + \varphi) = \rho s^\top n \)

\(\varphi \): ambient light parameter. SH model accounts for 87.5% real-world illumination.
Surface Normal

\[n = \frac{1}{\sqrt{\nabla z^2 + 1}} \begin{pmatrix} \nabla z \\ -1 \end{pmatrix} \]

Our goal is to acquire \(z \) from the SH model.

OVERALL ENERGY

\(E(s, \rho, z) = E_{data}(z) + E_{shading}(s, \rho, z) + E_{regu} \)

\(E_{data}(z) = \lambda_z \| z - z_0 \|^2 \) depth data term

\(E_{shading}(s, \rho, z) \) varies from methods

\(E_{regu} \) regularization imposed on \(\rho \) or \(z \)

REFERENCE

RGBD-FUSION LIKE METHOD
Modification of RGBD-Fusion method [2].

\[E_{shading} = \| I - \rho s^\top n \|^2 \]

\[E_{regu} = \lambda_s \| \sum_{k \in N} \omega_k (\rho - \rho_k) \|^2 + \lambda_z \| \Delta z \|^2 \]

Input depth [3] Pre-processing Refined depth

MULTI-LIGHT METHOD

Red and Green channel:

\[\frac{I_R - \rho R \varphi_R}{I_G - \rho G \varphi_G} = \frac{\rho R l_R^\top n}{\rho G l_G^\top n} \]

Nonlinearity has been resolved.

\[\rho_R (I_R - \rho R \varphi_R) l_R^\top n - \rho_R (I_G - \rho G \varphi_G) l_G^\top n = 0 \]

\[\rho_G (I_G - \rho G \varphi_G) l_G^\top n - \rho_G (I_R - \rho R \varphi_R) l_R^\top n = 0 \]

\[\Rightarrow R(\rho, z) = 0 \text{ (RGB ratio model)} \]

RESULTS

SYNTHETIC DATA

RMSE 2.87, MAE 17.22 RMSE 2.88, MAE 17.73 RMSE 2.89, MAE 19.64

REAL DATA

RMSE 3.33, MAE 16.30

ACKNOWLEDGEMENTS