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Agenda

● 3D Scene Representations

● [ECCV’20] Convolutional Occupancy Networks

● [NeurIPS’21] Shape As Points: A Differentiable Poisson Solver

● [arXiv’21]: NICE-SLAM: Neural Implicit Scalable Encoding for SLAM
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3D Representations

● Traditional Explicit Representations ⇒ Discrete
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Neural Implicit Representations
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SDF
Occupancy
Color
Semantics
……



3D Representations

● Traditional Explicit Representations ⇒ Discrete
● Neural Implicit Representations ⇒ Continuous

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019 6



Limitations
Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019 7



Limitations
Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

● Global latent code ⇒ overly smooth geometry
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Limitations
Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

● Global latent code ⇒ overly smooth geometry
● Fully-connected architecture ⇒ no translation equivariance
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Limitations
Implicit models work well for simple objects but poorly on complex scenes:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

ONet GT Mesh
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How to reconstruct large-scale 3D scenes with
neural implicit representations?

Convolutional Occupancy Networks
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Convolutional Occupancy Networks

Songyou Peng Michael Niemeyer Lars Mescheder Marc Pollefeys Andreas Geiger



Main Idea
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Main Idea

● 3D Volume Encoder: Use a local PointNet to process input, volumetric feature encoding
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Main Idea

● 3D Volume Encoder: Use a local PointNet to process input, volumetric feature encoding
● 3D Volume Decoder: Processed by 3D U-Net, query features via trilinear interpolation
● Occupancy Readout: Shallow occupancy network 
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Main Idea - 2D

● 2D Plane Encoder: Use a local PointNet to process input, project onto 3-canonical planes
● 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
● Occupancy Readout: Shallow occupancy network 
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Comparison
global feature

heavy FC network

no translation equivariance

local feature

shallow FC network

translation equivariance
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Results
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Object-Level Reconstruction

Input ONet Ours - 2D Ours - 3D GT Mesh 19



Training Speed
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Training Speed
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Scene-Level Reconstruction: Synthetic

Input GT Mesh

● Trained and evaluated on synthetic rooms
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Scene-Level Reconstruction: Synthetic

Input ONet

● ONet fails on room-level reconstruction
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Scene-Level Reconstruction: Synthetic

Input SPSR
(Screened Poisson Surface Reconstruction)

● SPSR requires surface normals, output is noisy
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Scene-Level Reconstruction: Synthetic

Input Ours

● Our method preserves better details
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Large-Scale Reconstruction

● Fully convolutional model

● Trained on synthetic crops

● Sliding-window evaluation

● Scale to any scene size

Results on Matterport3D

Scene size: 15.7m x 12.3m x 4.5m

Our reconstruction output 26



Large-Scale Reconstruction

● Fully convolutional model

● Trained on synthetic crops

● Sliding-window evaluation

● Scale to any scene size

Results on Matterport3D

Our reconstruction output

Scene size: 15.7m x 12.3m x 4.5m

27



● ConvONet allows for scaling to large-scale scenes

● ConvONet generalizes well from synthetic to real scenes

● ConvONet trains faster than original ONet

Conclusions

Limitations

● Slow inference due to dense grid evaluation

● Difficult to initialize
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Shape As Points
A Differentiable Poisson Solver

Songyou Peng Michael NiemeyerYiyi Liao Marc Pollefeys Andreas GeigerChiyu “Max” Jiang



3D Representations

Traditional Explicit Representations 
Discrete
Fast inference

30



3D Shape Representations

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

Neural Implicit Representations 
Continuous, watertight
Slow inference
Difficult to initialize



3D Shape Representations

Shape As Points (SAP) - Hybrid Representation
Discrete (Oriented point clouds) ⇒ Continuous (Implicit indicator grid)
Fast inference
Easy initialization
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Differentiable Poisson Solver

DPSR
in

out
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Intuition of Poisson Equation

Shape Indicator Function Gradient Point Normals
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Our Poisson Solver

● Discretization allows to invert the divergence operator

● Spectral methods to solve the Poisson equation efficiently
○ Derivatives of signals in spectral domain are computed analytically
○ Fast Fourier Transform (FFT) are highly optimized on GPUs/TPUs
○ Only 25-line code
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SAP for Optimization-based 3D Reconstruction
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Pipeline - Forward Pass

Input an initial oriented point cloud
(noisy / incomplete observations)
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Pipeline - Forward Pass
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Pipeline - Forward Pass
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Pipeline - Forward Pass
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Pipeline - Forward Pass
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Pipeline - Forward Pass
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Pipeline - Backward Pass

?

?
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Pipeline
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Pipeline
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Comparison

Unoriented Point Clouds GT Mesh
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Comparison

Unoriented Point Clouds Point2Mesh

Runtime: 62 mins

Hanocka, Metzer, Giryes, Cohen-Or: Point2Mesh: A Self-Prior for Deformable Meshes. SIGGRAPH, 2020 48



Comparison

Unoriented Point Clouds

Gropp, Yariv, Haim, Atzmon and Lipman: Implicit Geometric Regularization for Learning Shapes. ICML, 2020

IGR

Runtime: 30 mins
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Comparison

Unoriented Point Clouds SAP

Runtime: ~6 mins
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Comparison

SPSR

Runtime: ~9 sec 

Kazhdan and Hoppe: Screened Poisson Surface Reconstruction. SIGGRAPH, 2013

SAP

Runtime: ~6 mins
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Can we further leverage the differentiability of the Poisson solver 
for deep neural networks?

SAP for Learning-based 3D Reconstruction
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Learning-based Pipeline
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Learning-based Pipeline
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Learning-based Pipeline
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Learning-based Pipeline
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Learning-based Pipeline
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Inputs GT Mesh
58



Inputs GT Mesh R2N2 AtlasNet
15 ms 25 ms
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Inputs GT Mesh ConvONet
327 ms
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Inputs GT Mesh ConvONet
327 ms

Ours
64 ms
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Benefit of Geometric Initialization

Chamfer distance over the training process

SAP converges much faster!
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Conclusions

● SAP is interpretable, lightweight and guarantees HQ watertight meshes

● SAP is also topology agnostic, enables fast inference

● Our Poisson solver is differentiable and GPU-accelerated

     

Limitation: Cubic memory requirements limits SAP for small scenes
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Learning Scene Textures

Neural Radiance Field (NeRF) Heat
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Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020 



Neural Radiance Field (NeRF)

67Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020 



KiloNeRF: Speeding up NeRF with 
Thousands of Tiny MLPs

Christian Reiser, Songyou Peng, Yiyi Liao, Andreas Geiger

ICCV 2021

UNISURF: Unifying Neural Implicit Surfaces and 
Radiance Fields for Multi-View Reconstruction

Michael Oechsle, Songyou Peng, Andreas Geiger

ICCV 2021 (Oral)



Given an RGB-D sequence, jointly represent geometry & color?

What if the camera poses are also unknown?
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Neural Implicit Representations 

for 

Simultaneous Localization and Mapping 
(SLAM)
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https://pengsongyou.github.io/nice-slam 
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iMAP

First dense SLAM system that uses a neural scene representation
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Use a single fully-connected network to represent the entire scene

Low-quality geometry, fail in larger scenes

Sucar, Liu, Ortiz, Davison: iMAP: Implicit Mapping and Positioning in Real-Time. ICCV 2021



NICE-SLAM

Hierarchical grid-based encoding
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High-quality scene geometry & camera tracking on large-scale scene

Local updates -> No forgetting problem for geometry
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[1] Oechsle, Peng, Geiger: UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction. ICCV 2021

Reformulate the volume rendering 
equation along each ray as [1]:
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Results
ScanNet Dataset

82



83iMAP NICE-SLAM

https://docs.google.com/file/d/1mCEKNstJlzdRTK_YKn7ggLKjpdufZemi/preview


84

Computations & Runtime



Results
Large Apartment with Multiple Rooms
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https://docs.google.com/file/d/1Fkh3WauPkDJ3sPxYrb5_vSWBf1t9cmF_/preview
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https://docs.google.com/file/d/10HmpTd_FqQudNvWkqRfr70sWBI1tlV_q/preview


Conclusion

● Hierarchical Encoding + Implicit decoders ->  Scalable scene representations
● Show decent results on large indoor scenes
● Do not have forgetting problems

Limitation

● Geometry & colors are OK, but far from satisfactory
● Camera tracking is worse than traditional methods
● Cannot scale up to outdoor scenes
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Thank You!

https://pengsongyou.github.io/sap

Shape As Points
NeurIPS’21 (Oral)

ConvONet
ECCV’20 (Spotlight)

https://pengsongyou.github.io/conv_onet

NICE-SLAM
arXiv’21

https://pengsongyou.github.io/nice-slam

https://pengsongyou.github.io/sap
https://pengsongyou.github.io/sap
https://pengsongyou.github.io/sap

