Neural Scene Representations for 3D Reconstruction

Songyou Peng

ETH Zurich & MPI

10.02.2022

Who Am I?

1992 – 2015: Live and study in China 🚰

2015 – 2017: Master in Europe

- Internship at
 Internship at
- Master thesis at

2018 – 2019: Research Engineer in Singapore

2019 – Now: PhD Student at ETH Zurich 🚺 & MPI 🌔

- With <u>Marc Pollefeys</u> and <u>Andreas Geiger</u>
- Internship at

Songyou Peng

https://pengsongyou.github.io/

Agenda

- 3D Scene Representations
- [ECCV'20] Convolutional Occupancy Networks
- [NeurIPS'21] Shape As Points: A Differentiable Poisson Solver
- [arXiv'21]: NICE-SLAM: Neural Implicit Scalable Encoding for SLAM

3D Representations

• Traditional Explicit Representations ⇒ **Discrete**

Neural Implicit Representations

3D Representations

- Traditional Explicit Representations ⇒ **Discrete**
- Neural Implicit Representations ⇒ Continuous

Structure of neural implicit representations:

Input \mathbf{x}

Structure of neural implicit representations:

Input \mathbf{x}

• Global latent code \Rightarrow overly smooth geometry

Structure of neural implicit representations:

Input \mathbf{x}

- Global latent code \Rightarrow overly smooth geometry
- Fully-connected architecture \Rightarrow no translation equivariance

Implicit models work well for **simple objects** but poorly on **complex scenes**:

How to reconstruct large-scale 3D scenes with neural implicit representations?

Convolutional Occupancy Networks

Convolutional Occupancy Networks

Songyou Peng

Michael Niemeyer

Lars Mescheder

Marc Pollefeys

Andreas Geiger

Main Idea

Main Idea

• **3D Volume Encoder**: Use a local PointNet to process input, volumetric feature encoding

Main Idea

- **3D Volume Encoder**: Use a local PointNet to process input, volumetric feature encoding
- **3D Volume Decoder**: Processed by 3D U-Net, query features via trilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Main Idea - 2D

- 2D Plane Encoder: Use a local PointNet to process input, project onto 3-canonical planes
- 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Results

Object-Level Reconstruction

Training Speed

Training Speed

• Trained and evaluated on synthetic rooms

Input

GT Mesh

• ONet fails on room-level reconstruction

Input

ONet

• SPSR requires surface normals, output is noisy

Input

SPSR (Screened Poisson Surface Reconstruction)

• Our method preserves better details

Input

Ours

Large-Scale Reconstruction

Results on Matterport3D

- Fully convolutional model
- Trained on synthetic crops
- Sliding-window evaluation
- Scale to any scene size

Large-Scale Reconstruction

Scene size: 15.7m x 12.3m x 4.5m

Results on Matterport3D

- Fully convolutional model
- Trained on synthetic crops
- Sliding-window evaluation
- Scale to any scene size

Conclusions

- ConvONet allows for scaling to large-scale scenes
- ConvONet generalizes well from synthetic to real scenes
- ConvONet trains faster than original ONet

Limitations

- Slow inference due to dense grid evaluation
- Difficult to initialize

Shape As Points A Differentiable Poisson Solver

Chiyu "Max" Jiang

Yiyi Liao

Michael Niemeyer

Marc Pollefeys

Andreas Geiger

3D Representations

Traditional Explicit Representations

- Discrete
- Fast inference

3D Shape Representations

Neural Implicit Representations

- Continuous, watertight
- Slow inference
- Difficult to initialize

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

3D Shape Representations

Shape As Points (SAP) - Hybrid Representation

- ➡ Discrete (Oriented point clouds) ⇒ Continuous (Implicit indicator grid)
- Fast inference
- Easy initialization

Differentiable Poisson Solver

Intuition of Poisson Equation

$$\nabla^2 \chi := \nabla \cdot \nabla \chi = \nabla \cdot \mathbf{v}$$

Shape

$$\begin{array}{c|c} & & & \\ \hline \chi & & \\ \chi & & \\ \hline \chi & & \\ \chi & & \\ \hline \chi & & \\ \chi$$

Point Normals

 \mathbf{V}

Our Poisson Solver

$$\nabla^2 \chi := \nabla \cdot \nabla \chi = \nabla \cdot \mathbf{v}$$

• **Discretization** allows to invert the divergence operator

$$\chi = (\nabla^2)^{-1} \nabla \cdot \mathbf{v}$$

- **Spectral methods** to solve the Poisson equation efficiently
 - Derivatives of signals in spectral domain are computed analytically
 - Fast Fourier Transform (FFT) are highly optimized on GPUs/TPUs
 - Only 25-line code

$$\tilde{\mathbf{v}} = \text{FFT}(\mathbf{v}) \longrightarrow \tilde{\chi} = \tilde{g}_{\sigma,r}(\mathbf{u}) \odot \frac{i\mathbf{u} \cdot \tilde{\mathbf{v}}}{-2\pi \|\mathbf{u}\|^2} \longrightarrow \chi' = \text{IFFT}(\tilde{\chi})$$

SAP for Optimization-based 3D Reconstruction
Input an initial oriented point cloud

(noisy / incomplete observations)

P

Pipeline - Backward Pass

$$rac{\partial \mathcal{L}_{\mathrm{CD}}}{\partial \mathbf{p}} = rac{\partial \mathcal{L}_{\mathrm{CD}}}{\partial \mathbf{p}_{\mathrm{mesh}}} rac{\partial \mathbf{p}_{\mathrm{mesh}}}{\partial \chi} rac{\partial \chi}{\partial \mathbf{p}}$$

Points and Normals

Unoriented Point Clouds

GT Mesh

Unoriented Point Clouds

Point2Mesh

Runtime: 62 mins

Unoriented Point Clouds

Runtime: 30 mins

Unoriented Point Clouds

SAP

Runtime: ~6 mins

SPSR

Runtime: ~9 sec

SAP

Runtime: ~6 mins

Can we further leverage the **differentiability** of the Poisson solver for **deep neural networks**?

SAP for Learning-based 3D Reconstruction

Inputs

Inputs

R2N2 15 ms

AtlasNet 25 ms

ConvONet 327 ms

Inputs

ConvONet 327 ms Ours 64 ms

Benefit of Geometric Initialization

Chamfer distance over the training process

Iterations	10K	50K	100K	200K	Best
ConvONet	0.082	0.058	0.055	0.050	0.044
Ours	0.041	0.036	0.035	0.034	0.034

SAP converges much faster!

Conclusions

- SAP is interpretable, lightweight and guarantees HQ watertight meshes
- SAP is also topology agnostic, enables fast inference
- Our Poisson solver is **differentiable** and **GPU-accelerated**

Limitation: Cubic memory requirements limits SAP for small scenes

Neural Radiance Field (NeRF) Heat

Learning Scene Textures

Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng: <u>NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis</u>. ECCV 2020

Neural Radiance Field (NeRF)

Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020

KiloNeRF: Speeding up NeRF with Thousands of Tiny MLPs

Christian Reiser, Songyou Peng, Yiyi Liao, Andreas Geiger

ICCV 2021

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

Michael Oechsle, Songyou Peng, Andreas Geiger

ICCV 2021 (Oral)

Given an RGB-D sequence, jointly represent **geometry & color**?

What if the camera poses are also unknown?

Neural Implicit Representations

for

Simultaneous Localization and Mapping (SLAM)

NICE-SLAM Neural Implicit Scalable Encoding for SLAM

Zihan Zhu^{1,2}* Songyou Peng^{1,3}* Viktor Larsson¹ Weiwei Xu² Hujun Bao² Zhaopeng Cui²# Martin R. Oswald^{1,4} Marc Pollefeys^{1,5}

(* equal contribution)

¹ETH Zurich ²State Key Lab of CAD&CG, Zhejiang University ³MPI for Intelligent Systems, Tübingen ⁴University of Amsterdam ⁵Microsoft

iMAP

- First dense SLAM system that uses a neural scene representationUse a single fully-connected network to represent the entire scene
- Low-quality geometry, fail in larger scenes

Sucar, Liu, Ortiz, Davison: <u>iMAP: Implicit Mapping and Positioning in Real-Time</u>. ICCV 2021

NICE-SLAM

Hierarchical grid-based encoding

High-quality scene geometry & camera tracking on large-scale scene

Local updates -> No forgetting problem for geometry

Input RGB

Input Depth

Input RGB

Input Depth

Input RGB

Input Depth

Input RGB

Reformulate the volume rendering equation along each ray as [1]:

$$\hat{D}^f = \sum_{i=1}^N w_i^f d_i, \quad \hat{I} = \sum_{i=1}^N w_i^f \mathbf{c}_i$$

 $w_{i}^{f} = o_{\mathbf{p}_{i}} \prod_{j=1}^{i-1} (1 - o_{\mathbf{p}_{j}})$

Input Depth

Input RGB

[1] Oechsle, Peng, Geiger: UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction. ICCV 2021

Input Depth

Input RGB

Results ScanNet Dataset

6X SPEED

00000000

iMAP

NICE-SLAM

FLO	$Ps [\times 10^{3}] \downarrow T$	Fracking [ms]↓	Mapping [ms]↓
iMAP [42]	443.91	101	448
NICE-SLAM (Ours)	104.16	47	130

Computations & Runtime

Results Large Apartment with Multiple Rooms

Residual

2X SPEED

Conclusion

- Hierarchical Encoding + Implicit decoders -> Scalable scene representations
- Show decent results on large indoor scenes
- Do not have forgetting problems

Limitation

- Geometry & colors are OK, but far from satisfactory
- Camera tracking is worse than traditional methods
- Cannot scale up to outdoor scenes

Thank You!

ConvONet ECCV'20 (Spotlight)

Shape As Points NeurIPS'21 (Oral)

NICE-SLAM arXiv'21

https://pengsongyou.github.io/conv_onet

https://pengsongyou.github.io/sap

https://pengsongyou.github.io/nice-slam