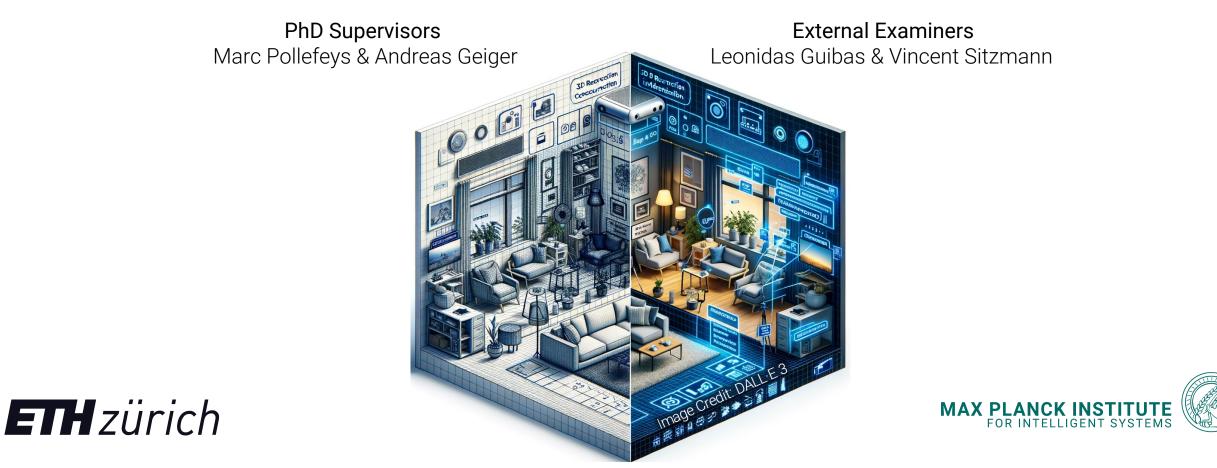
Neural Scene Representations for 3D Reconstruction and Scene Understanding

Songyou Peng



Intelligent systems interact with 3D environments

3D Reconstruction

Create digital twins from real scenes

3D Scene Understanding

Analyze the scene digitally

Video Credit: YouTube - Real time archviz apartment

Key Challenges

Reconstruct and **Understand** 3D Environments

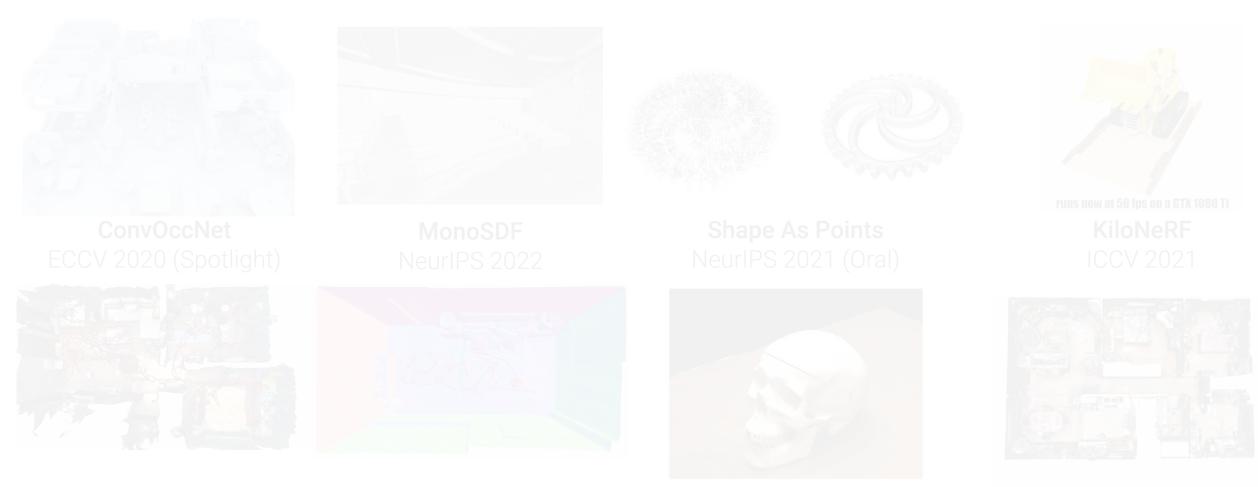
- Reconstruct 3D scenes **at scale**
- Reconstruct 3D scenes at speed
- Reconstruct purely from 2D observations

Key Challenges

Reconstruct and **Understand** 3D Environments

- Reconstruct 3D scenes **at scale**
- Reconstruct 3D scenes at speed
- Reconstruct purely from 2D observations

- Understand arbitrary concepts in a 3D scene
- Learn to understand without labeled 3D data



NICE-SLAM CVPR 2022 NICER-SLAM 3DV 2024 (Oral)

UNISURF ICCV 2021 (Oral) **OpenScene** CVPR 2023 4

ConvOccNet ECCV 2020 (Spotlight)



MonoSDF NeurIPS 2022

Topic #1: Reconstruct Complex Scenes

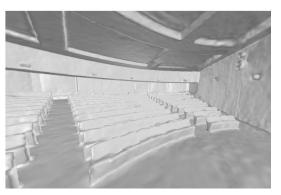
NICE-SLAM CVPR 2022 NICER-SLAM 3DV 2024 (Oral) UNISURF ICCV 2021 (Oral)

OpenScene CVPR 2023 5

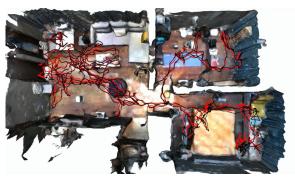
Topic #2: Fast Inference

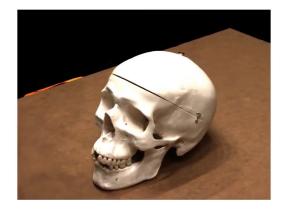
Shape As Points NeurIPS 2021 (Oral)

KiloNeRF ICCV 2021



Topic #3: **Reconstruct from 2D Observations**





UNISURF ICCV 2021 (Oral)

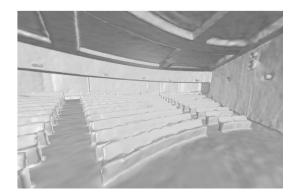
NICE-SLAM CVPR 2022

NICER-SLAM 3DV 2024 (Oral)

NICE-SLAM CVPR 2022 **NICER-SLAM** 3DV 2024 (Oral) UNISURF

OpenScene CVPR 2023 8

ConvOccNet ECCV 2020 (Spotlight)



MonoSDF NeurIPS 2022

Shape As Points NeurIPS 2021 (Oral)

UNISURF ICCV 2021 (Oral)

KiloNeRF ICCV 2021

OpenScene CVPR 2023 9



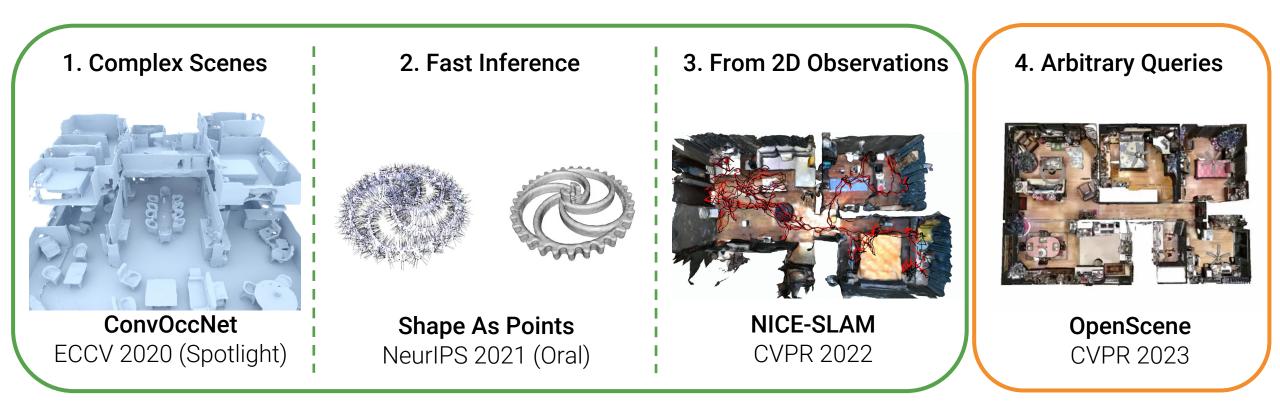
NICER-SLAM

3DV 2024 (Oral)

NICE-SLAM CVPR 2022

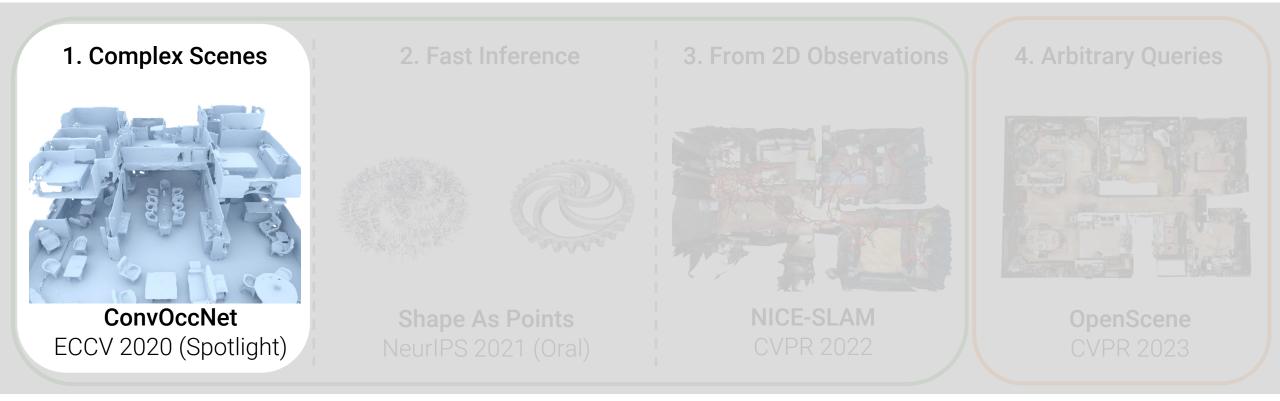
This Thesis

Develop <u>3D Neural Scene Representations</u> for **3D Reconstruction** and **3D Scene Understanding**

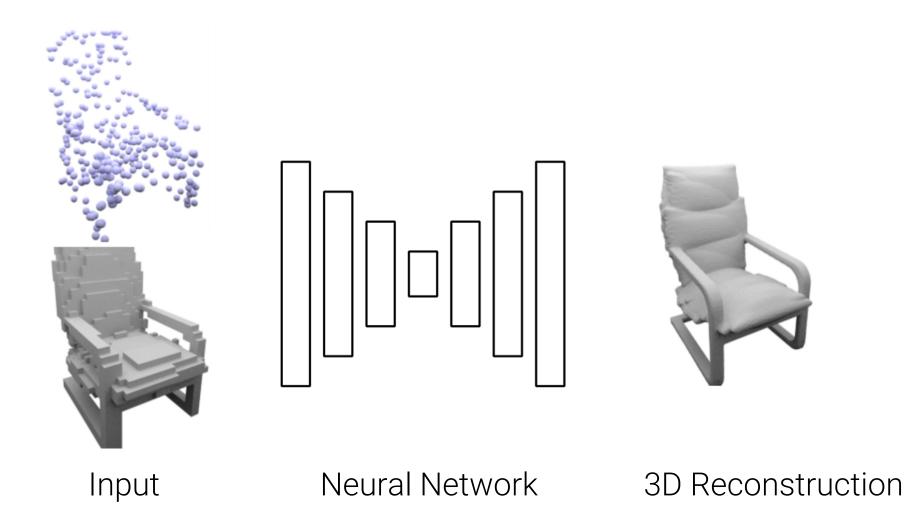


This Thesis

Develop 3D Neural Scene Representations for **3D Reconstruction** and **3D Scene Understanding**



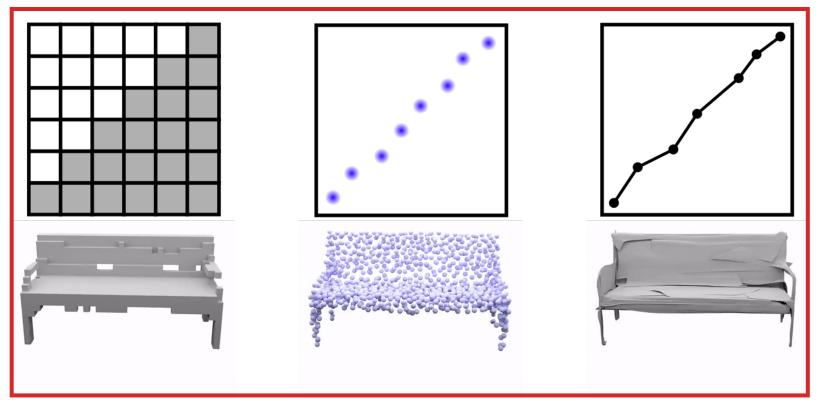
Learning-based 3D Reconstruction



What is a good **3D output representation**?

3D Representations

Traditional Explicit Representations



Discretization

3 Seminal Papers at the Same CVPR! Neural Implicit Representations

Occupancy Networks: Learning 3D Reconstruction in Function Space

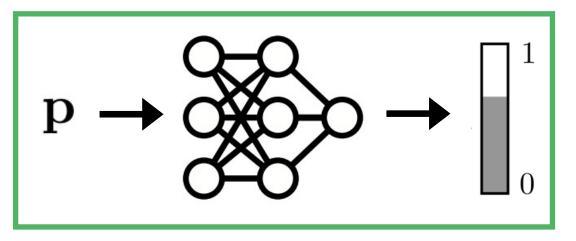
Lars Mescheder¹ Michael Oechsle^{1,2} Michael Niemeyer¹ Sebastian Nowozin^{3†} Andreas Geiger¹ ¹Autonomous Vision Group, MPI for Intelligent Systems and University of Tübingen ²ETAS GmbH, Stuttgart ³Google AI Berlin

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park^{1,3†} Peter Florence ^{2,3†} Julian Straub³ Richard Newcombe³ Steven Lovegrove³ ¹University of Washington ²Massachusetts Institute of Technology ³Facebook Reality Labs Zhiqin Chen Simon Fraser University zhiqinc@sfu.ca

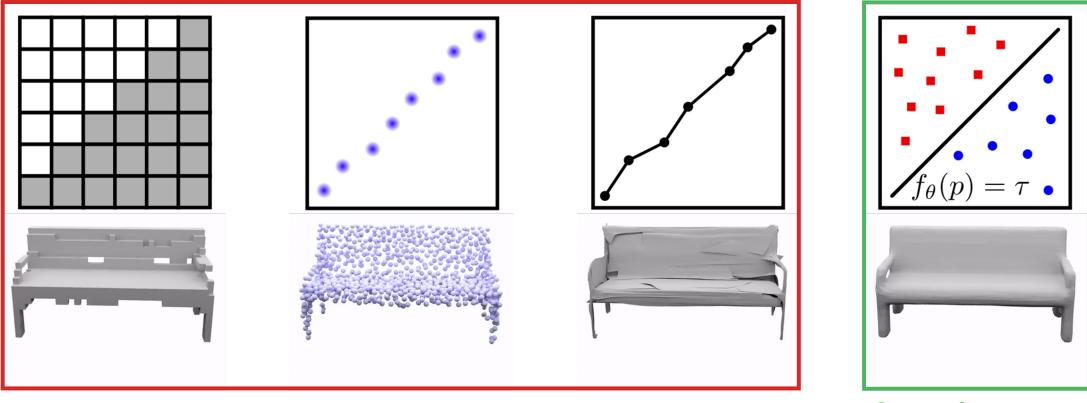
Learning Implicit Fields for Generative Shape Modeling

Hao Zhang Simon Fraser University haoz@sfu.ca



3D Representations

Neural Implicit Representations



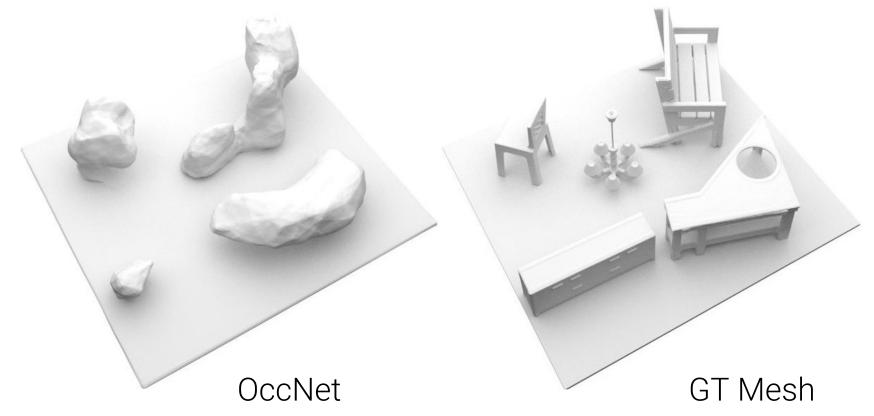
Discretization

Continuous

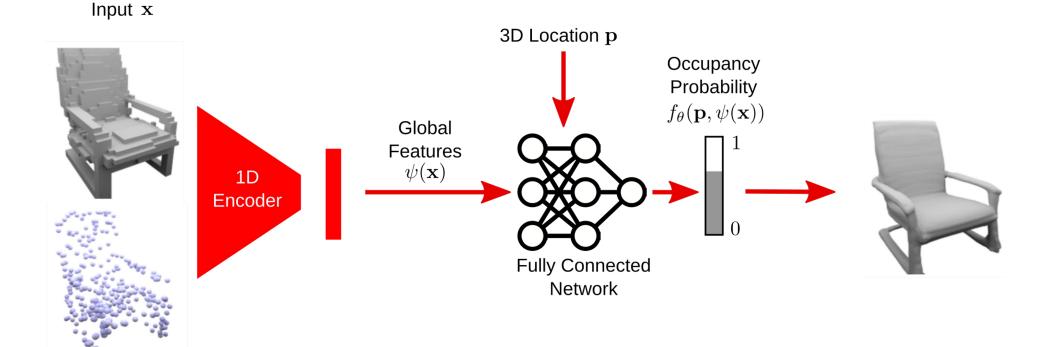
Limitations

Neural Implicit Representations

Works well for **simple objects**, but poorly on **complex scenes**

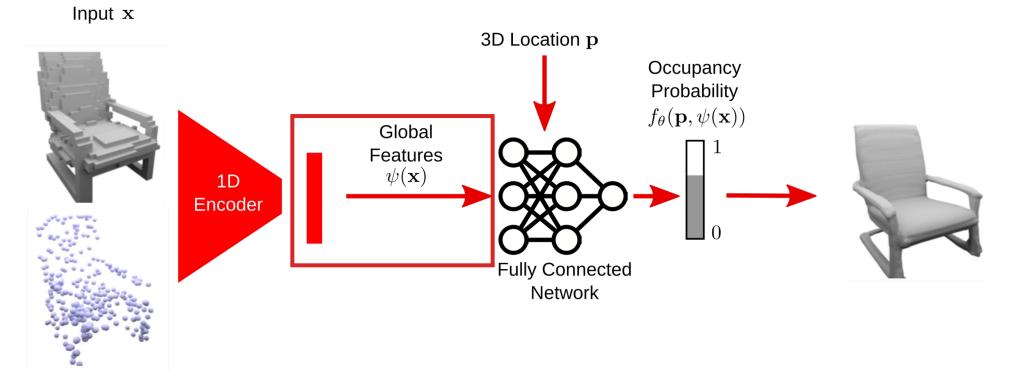


Limitations Neural Implicit Representations



Limitations

Neural Implicit Representations



• Global latent code ⇒ **overly smooth geometry**

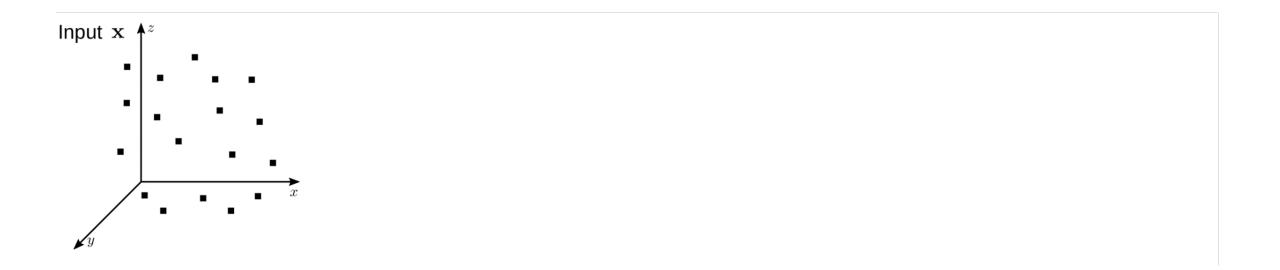
Limitations Neural Implicit Representations

Input x 3D Location p Occupancy Probability $f_{\theta}(\mathbf{p}, \psi(\mathbf{x}))$ $f_{\theta}(\mathbf{p}, \psi(\mathbf{x}))$ f_{θ

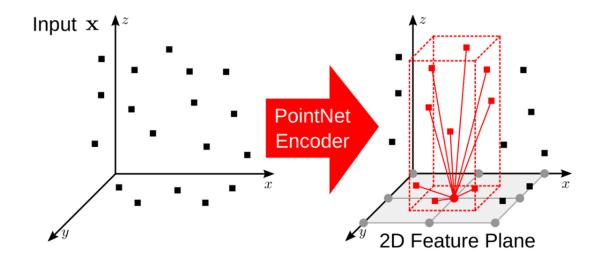
- Global latent code ⇒ overly smooth geometry
- Fully-connected architecture ⇒ no translation equivariance

How to reconstruct large-scale 3D scenes with

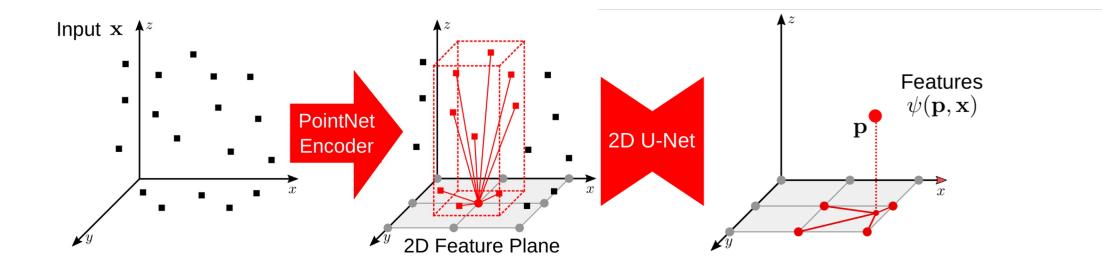
neural implicit representations?



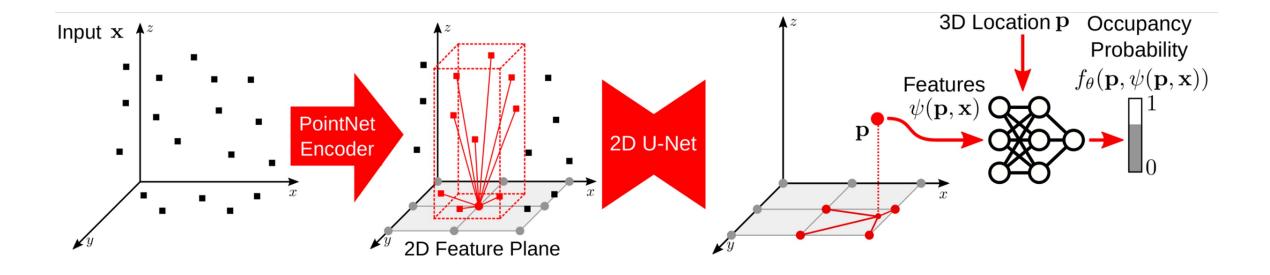
Convolutional Occupancy Networks



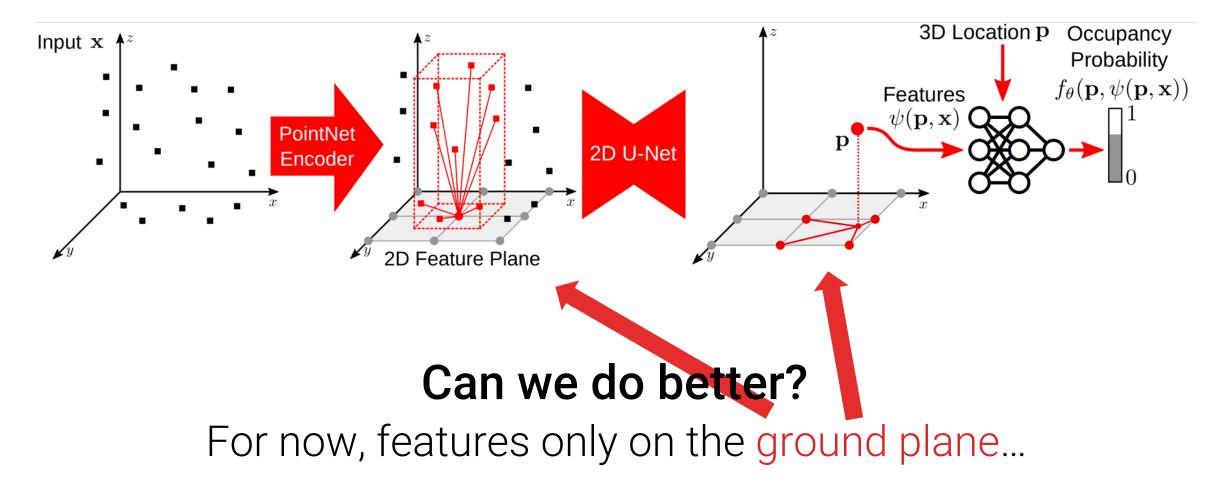
• 2D Plane Encoder: Project point features onto the canonical plane



- 2D Plane Encoder: Project point features onto the canonical plane
- 2D Plane Decoder: Processed by UNet, query features via bilinear interpolation

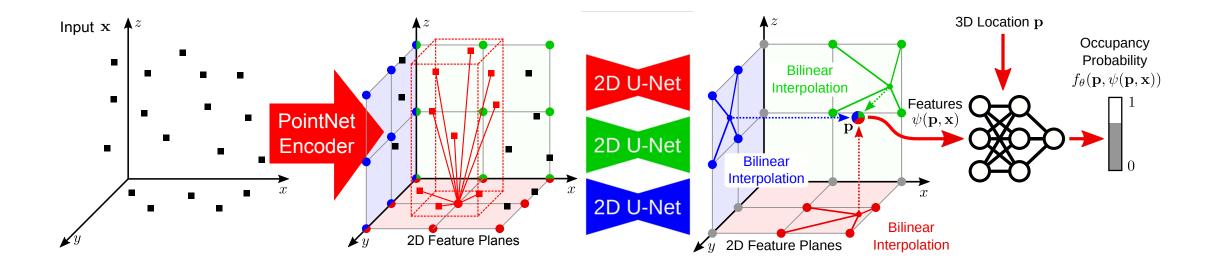


- **2D Plane Encoder**: Project point features onto the canonical plane
- 2D Plane Decoder: Processed by UNet, query features via bilinear interpolation
- Occupancy Net: Shallow MLP $f_{\theta}(\cdot)$



Main Idea – "Tri-plane"

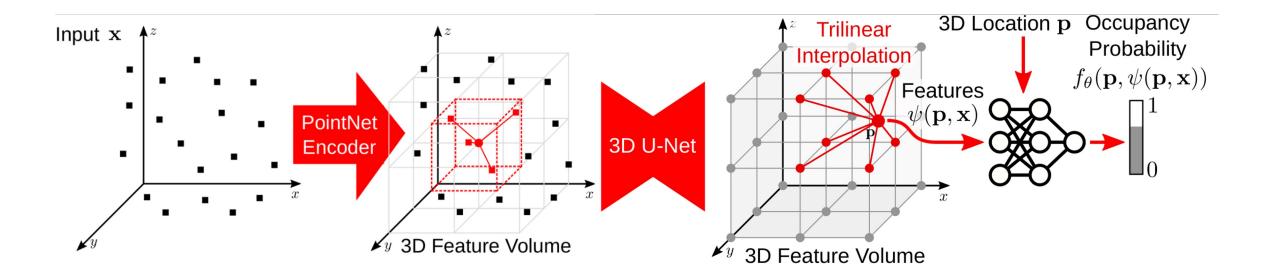
Convolutional Occupancy Networks



Project features on X, Y, Z canonical planes

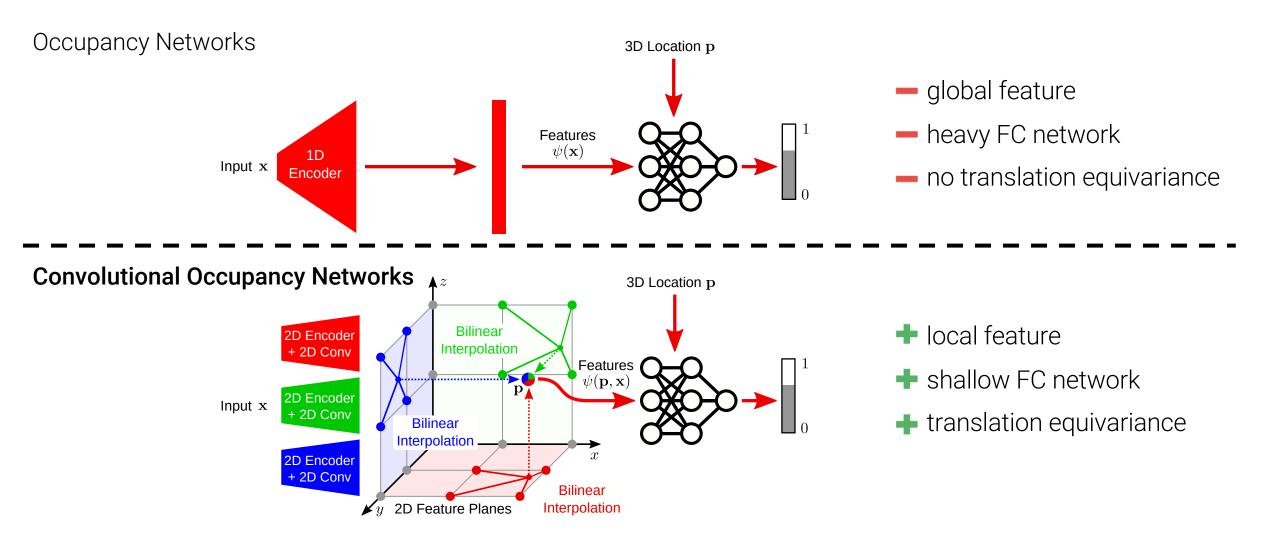
Main Idea – 3D Volume

Convolutional Occupancy Networks



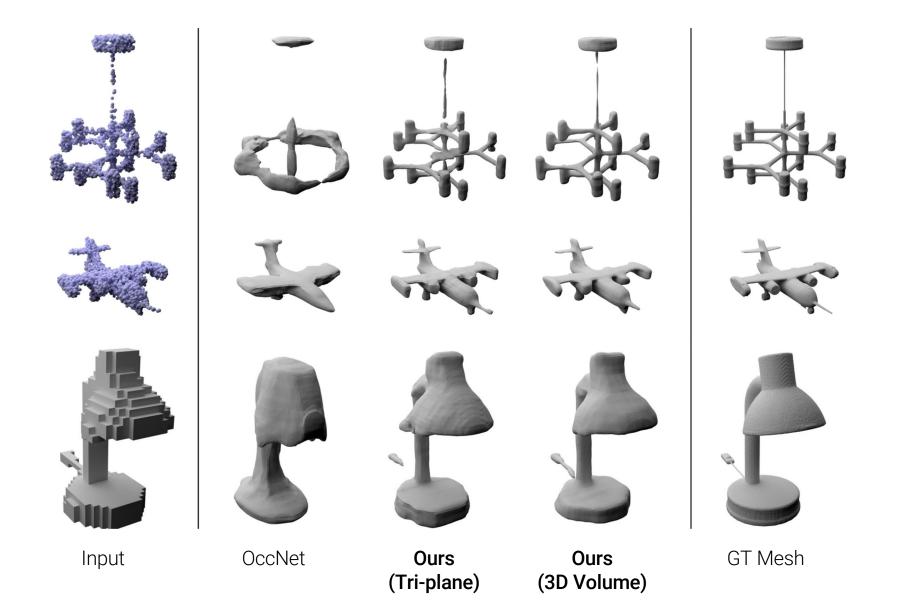
Encode local information into a **3D feature volume**

Comparison

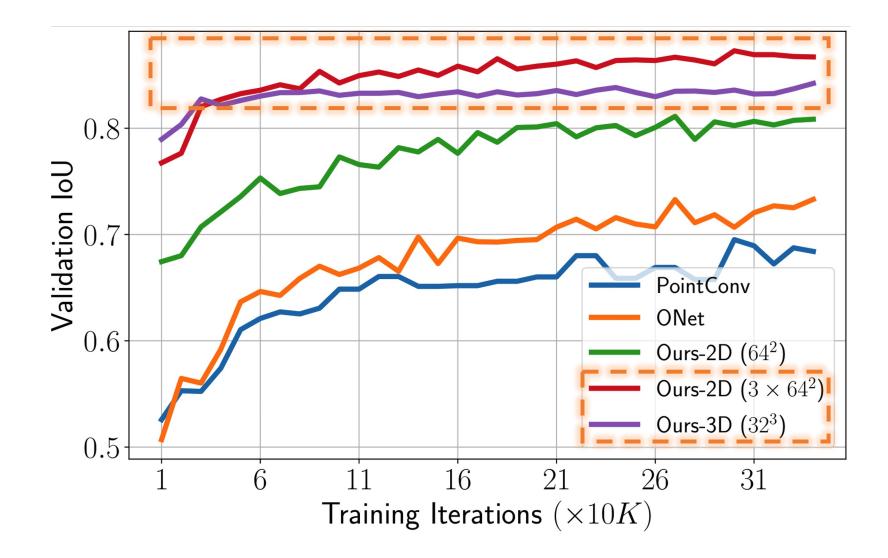


Results

Object-Level Reconstruction

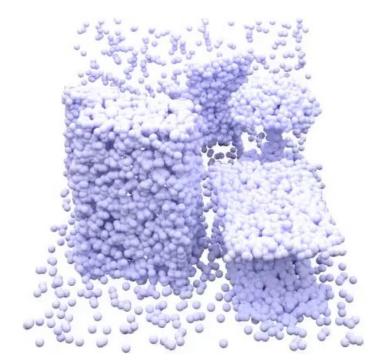


Training Speed



Scene-Level Reconstruction

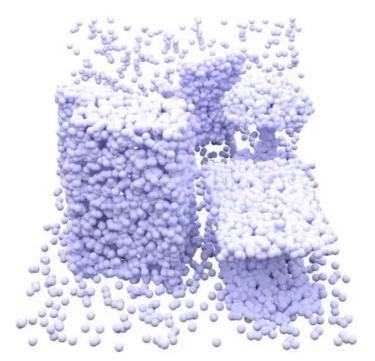
Train and evaluate on synthetic room



Input

Scene-Level Reconstruction

OccNet fails on room-level reconstruction



Input

OccNet

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

Scene-Level Reconstruction SPSR requires surface normal, output is noisy

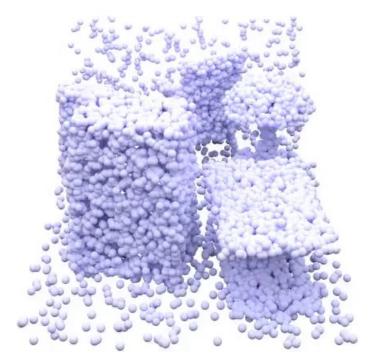
Input

SPSR (Screened Poisson Surface Reconstruction)

Kazhdan and Hoppe: Screened Poisson Surface Reconstruction. ToG, 2013

Scene-Level Reconstruction

Ours preserves better details



Input

Ours

Peng, Niemeyer, Mescheder, Pollefeys, and Geiger: Convolutional Occupancy Networks. ECCV, 2020

Scene-Level Reconstruction

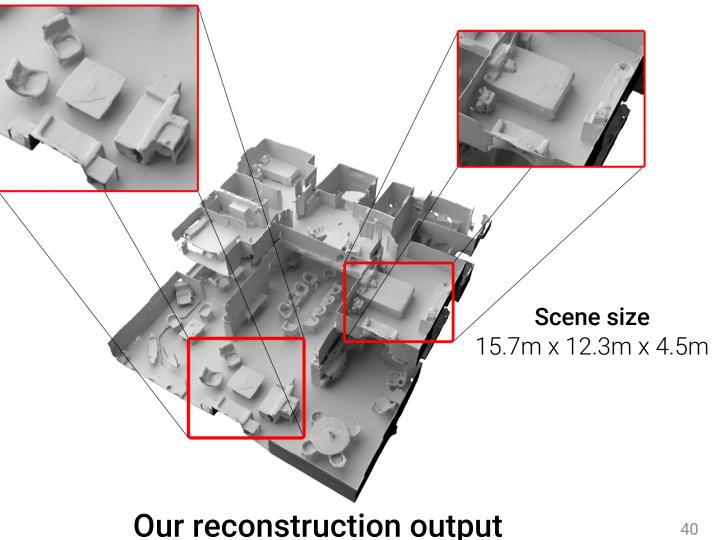
OccNet

SPSR

Ours

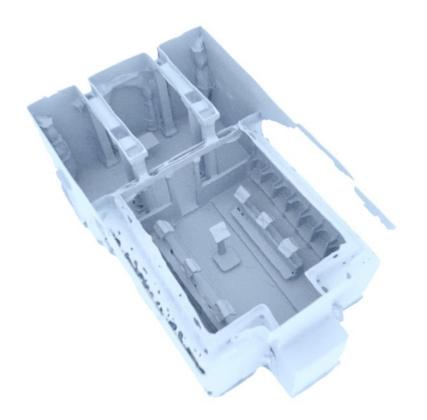
Large-Scale Reconstruction Reconstruct a big house in Matterport3D

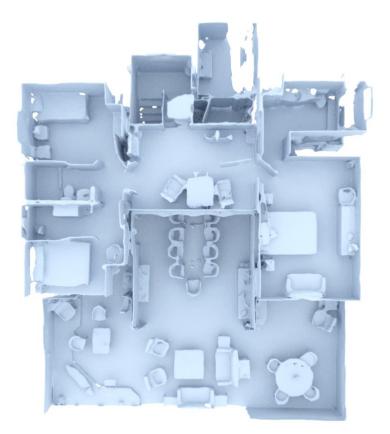
- Fully convolutional model
 - Sliding-window evaluation
 - Scale to any size
- Trained on synthetic crops



Large-Scale Reconstruction

Reconstruct large-scale scenes in Matterport3D





ConvOccNet - TL;DR

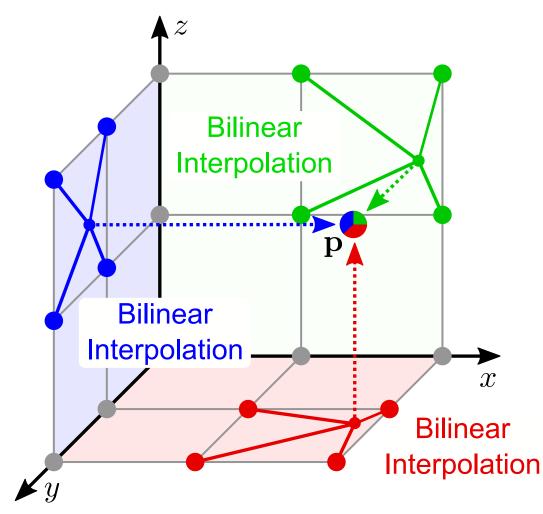
Three hybrid representations for neural fields

a) Ground plane b) **Tri-plane** c) 3D volume

CNN's translation equivariance rocks

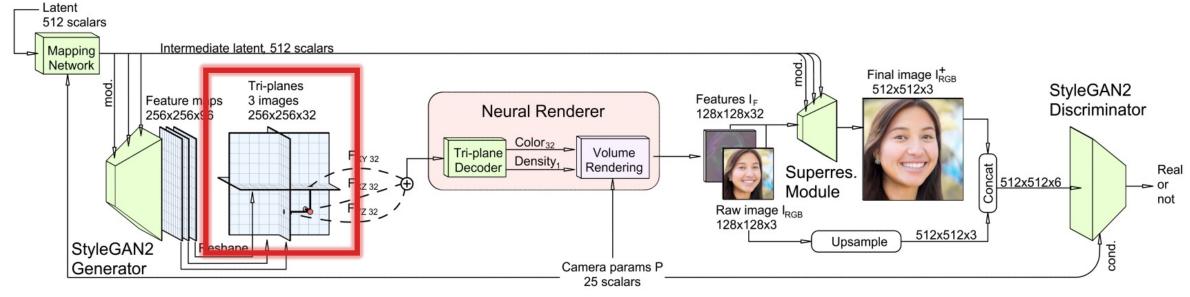
Synthetic-to-real generalization

"Tri-plane" Representations



Reviewer 2: "What is the point of having that 3-plane representation?"

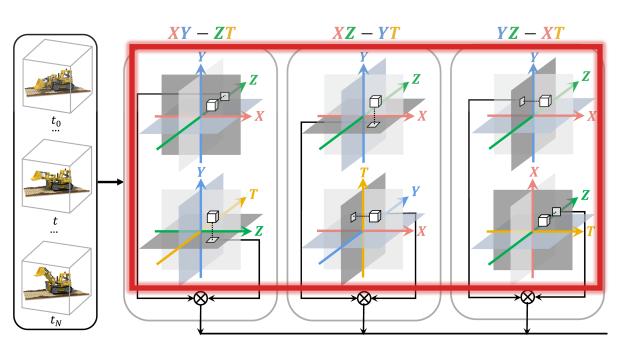
"Tri-plane" Representations High Fidelity 3D-Aware View Synthesis



Chan et al.: Efficient Geometry-aware 3D Generative Adversarial Networks. CVPR 2022

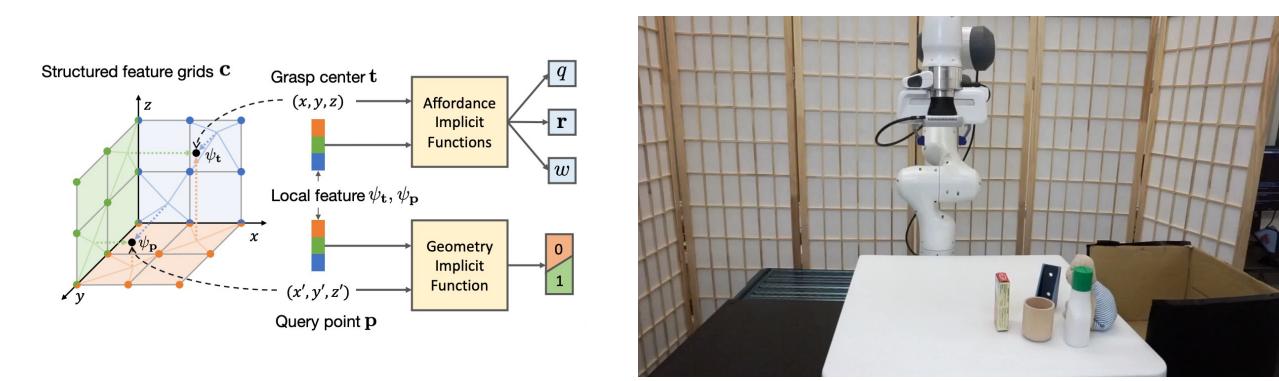
"Tri-plane" Representations

Efficient 4D View Synthesis



Cao and Johnson: HexPlane: A Fast Representation for Dynamic Scenes. CVPR 2023

"Tri-plane" Representations Robot Grasping



ConvOccNet - Limitations

Features $\psi(\mathbf{x})$

3D Location p

Very slow inference

For a grid of **128³**, **> 2 million MLP forward passes** !

Shape As Points: A Differentiable Poisson Solver

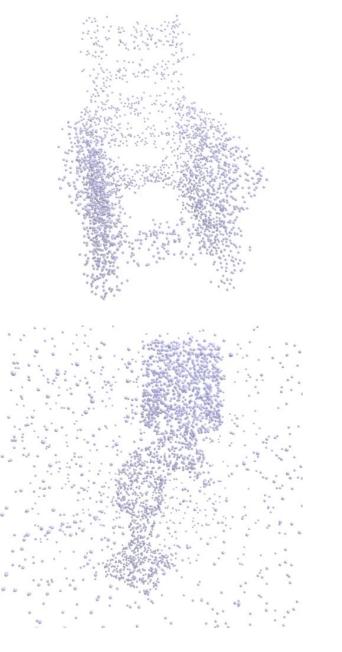
Songyou Peng^{1,2}Chiyu "Max" Jiang*†Yiyi Liao^{2,3†}Michael Niemeyer^{2,3}Marc Pollefeys^{1,4}Andreas Geiger^{2,3}

¹ETH Zurich ²Max Planck Institute for Intelligent Systems, Tübingen ³University of Tübingen ⁴Microsoft

Shape As Points A Differentiable Point-to-Mesh Layer

No network evaluation, fast!

Peng, Jiang, Liao, Niemeyer, Pollefeys, and Geiger: Shape As Points: A Differentiable Poisson Solver. NeurIPS 2021



ConvOccNet

327 ms

SAP

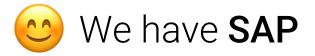
12 ms

Inputs

GT Mesh

ConvOccNet - Limitations

Very slow inference

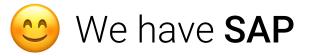


Only reconstruct from 3D noisy point clouds

Can we online reconstruct purely from 2D observations?

ConvOccNet - Limitations

Very slow inference



Only reconstruct from 3D noisy point clouds

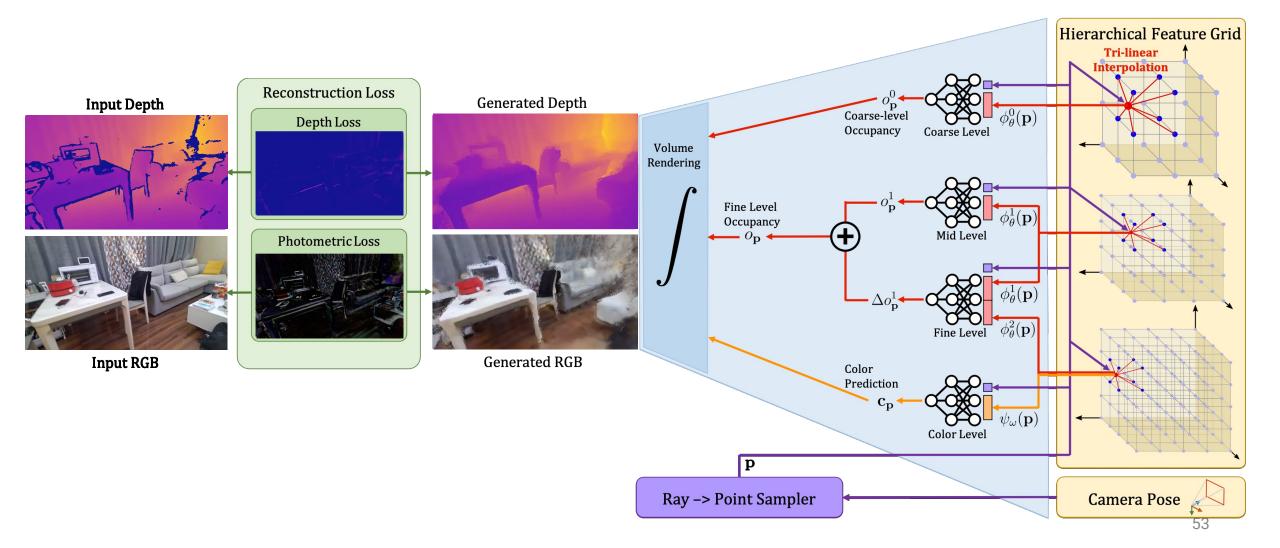
NICE-SLAM: Neural Implicit Scalable Encoding for SLAM

Zihan Zhu^{1,2*}Songyou Peng^{2,4*}Viktor Larsson³Weiwei Xu¹Hujun Bao¹Zhaopeng Cui^{1†}Martin R. Oswald^{2,5}Marc Pollefeys^{2,6}

¹State Key Lab of CAD&CG, Zhejiang University ²ETH Zurich ³Lund University ⁴MPI for Intelligent Systems, Tübingen ⁵University of Amsterdam ⁶Microsoft

NICE-SLAM

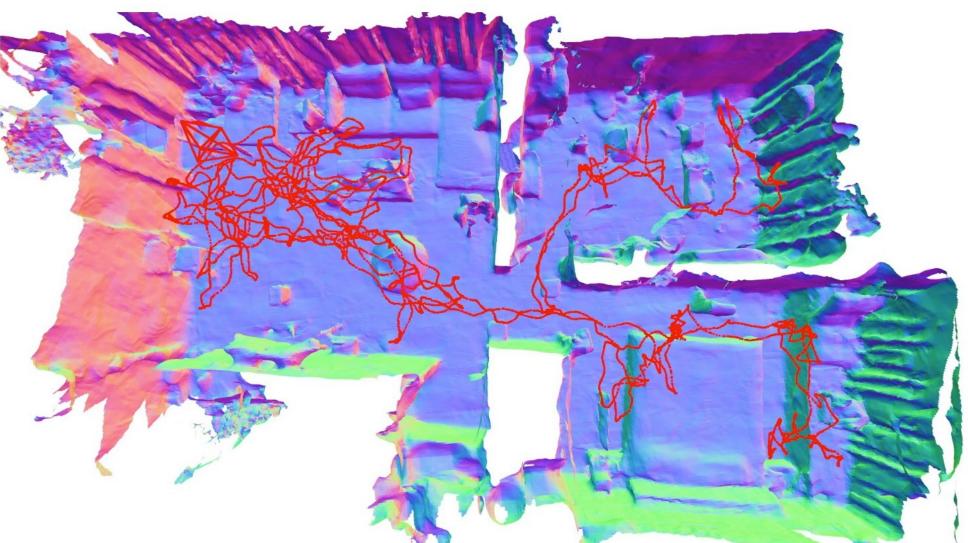
Neural Implicit Scalable Encoding for SLAM



RGB-D Sequences

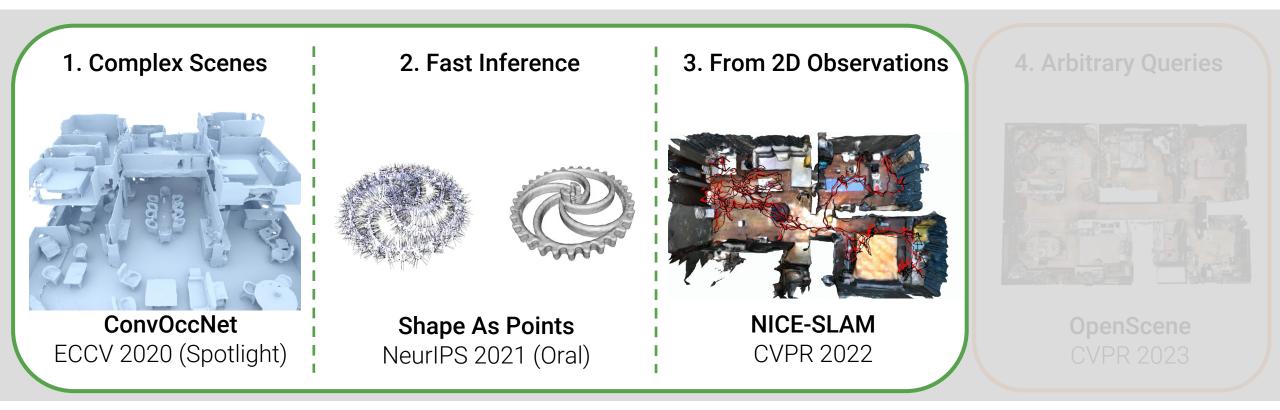


40x Speed

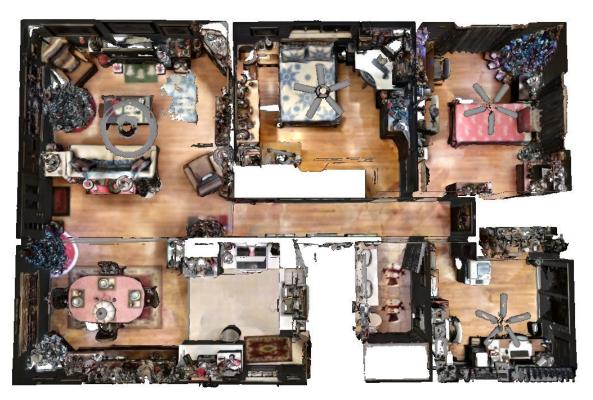


This Thesis

Develop 3D Neural Scene Representations for **3D Reconstruction** and **3D Scene Understanding**

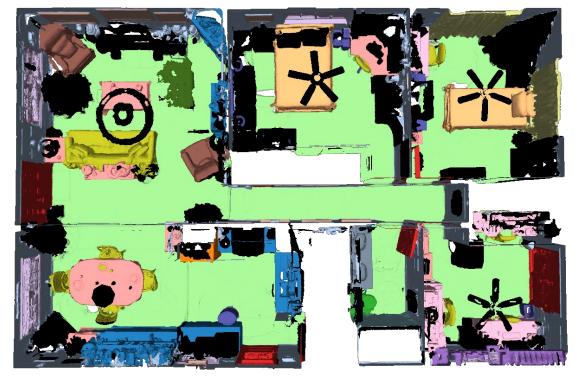


Input 3D Geometry



Input 3D Geometry

📕 wall 📕	floor 📕 ca	abinet 📒 be	ed 📒 chair	sofa	table	door	
window	ounter	📕 curtain	toilet	sink	bathtub	other	unlabeled



Traditional 3D Scene Understanding (e.g. Semantic Segmentation) Only train and test on a few common classes

3D Scene Understanding Tasks w/o Labels

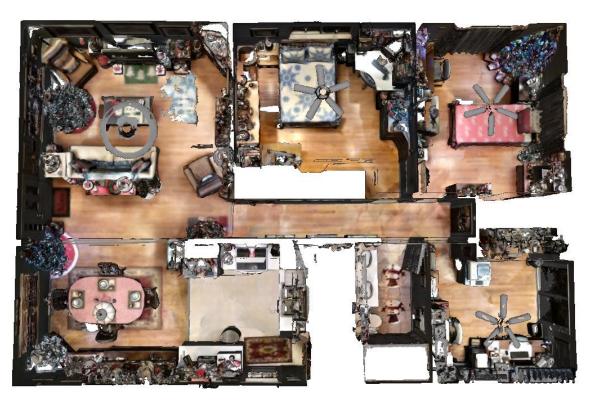
Affordance prediction

Input 3D Geometry

3D Scene Understanding Tasks w/o Labels

Example: "where can I sit?"

• Affordance prediction



Input 3D Geometry

3D Scene Understanding Tasks w/o Labels

- Affordance prediction
- Material identification
- Physical property estimation
- Rare object retrieval
- Activity site prediction
- Fine-grained semantic segmentation
- Many more...

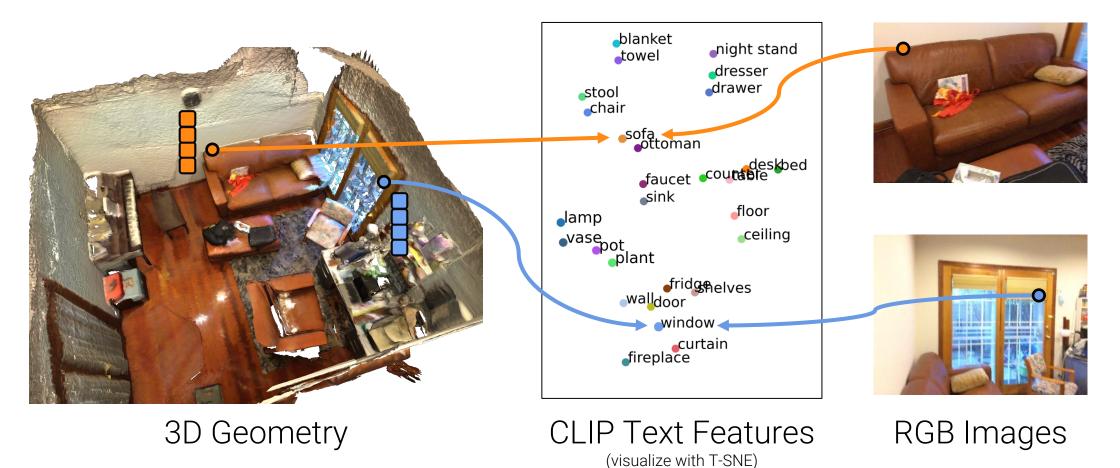
How to learn a scene representation to handle all these tasks without labeled 3D data?

This Thesis

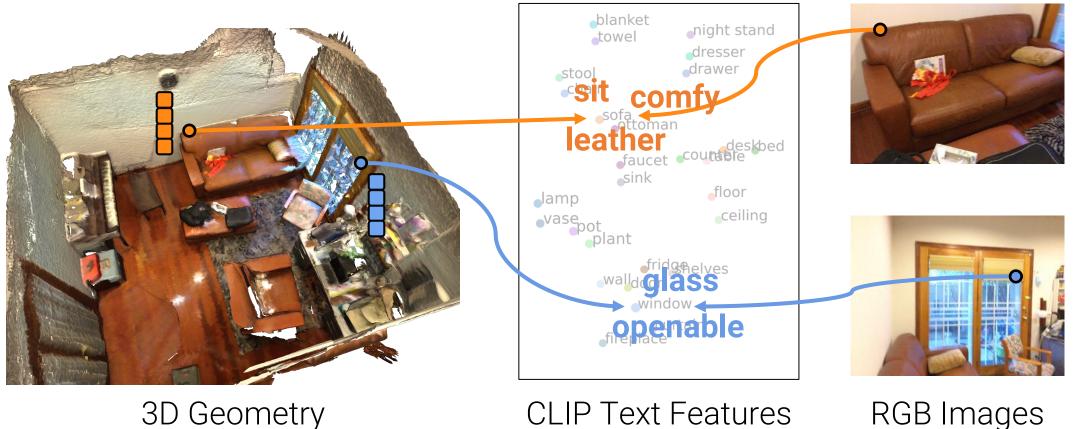
Develop 3D Neural Scene Representations for **3D Reconstruction** and **3D Scene Understanding**

Key Idea

Co-embed 3D Features with CLIP Features



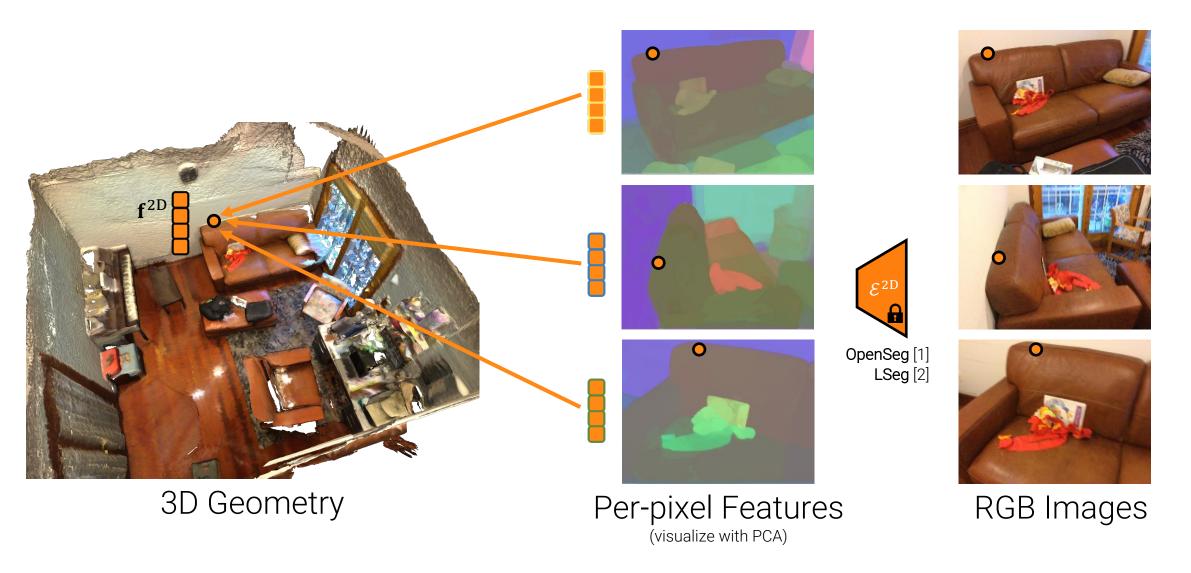
Key Idea Co-embed 3D Features with CLIP Features



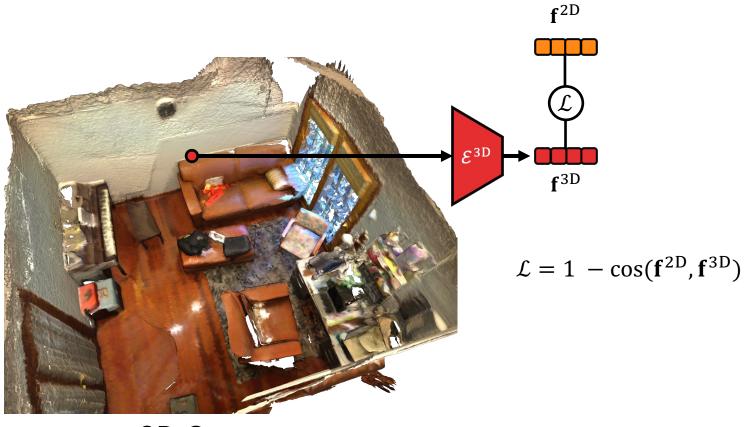
(visualize with T-SNE)

How to Learn Such Text-Image-3D Co-Embeddings?

Step 1: Multi-view Feature Fusion

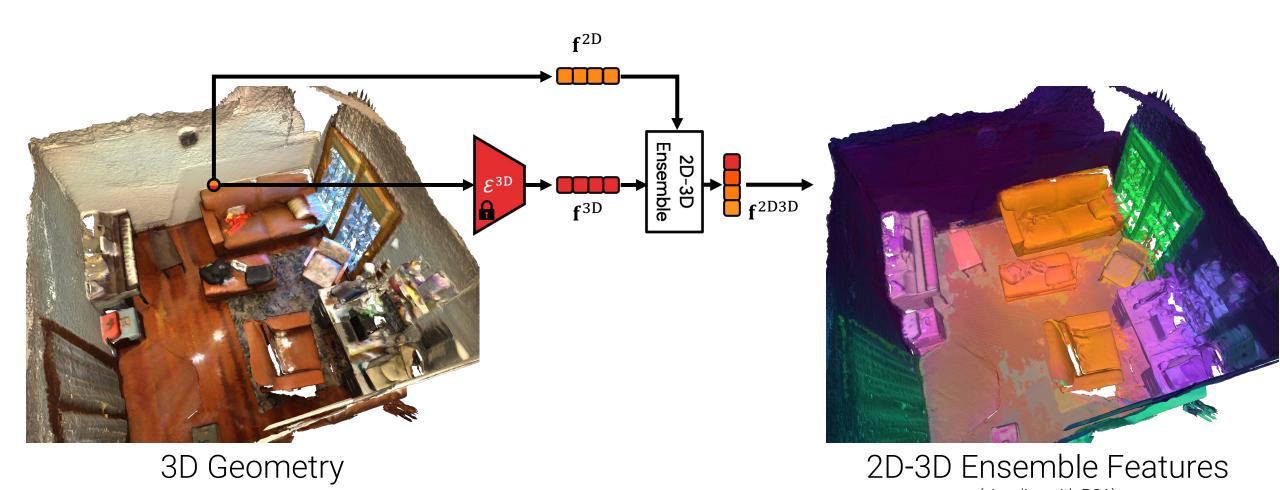


Step 2: 3D Feature Distillation



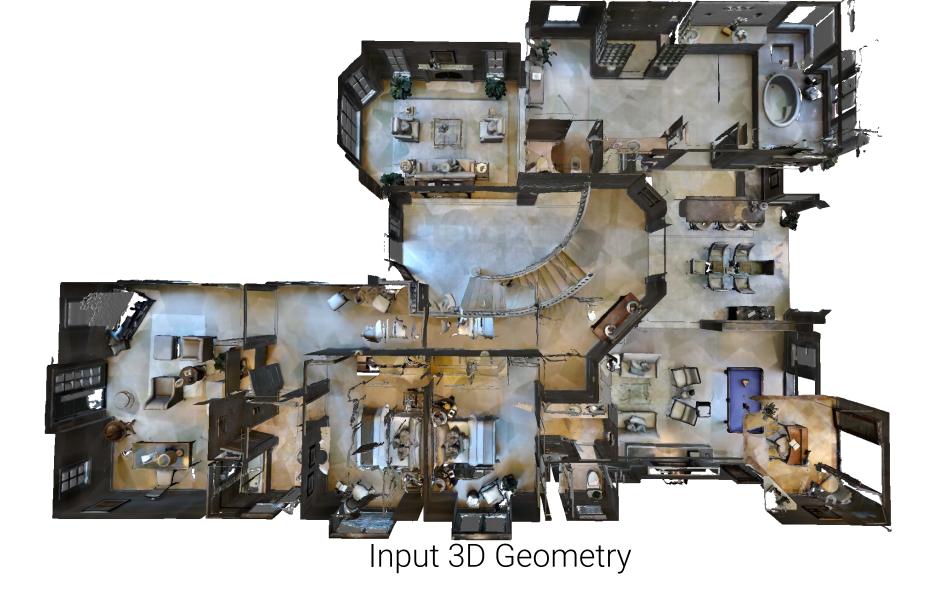
3D Geometry

Inference: 2D-3D Ensemble

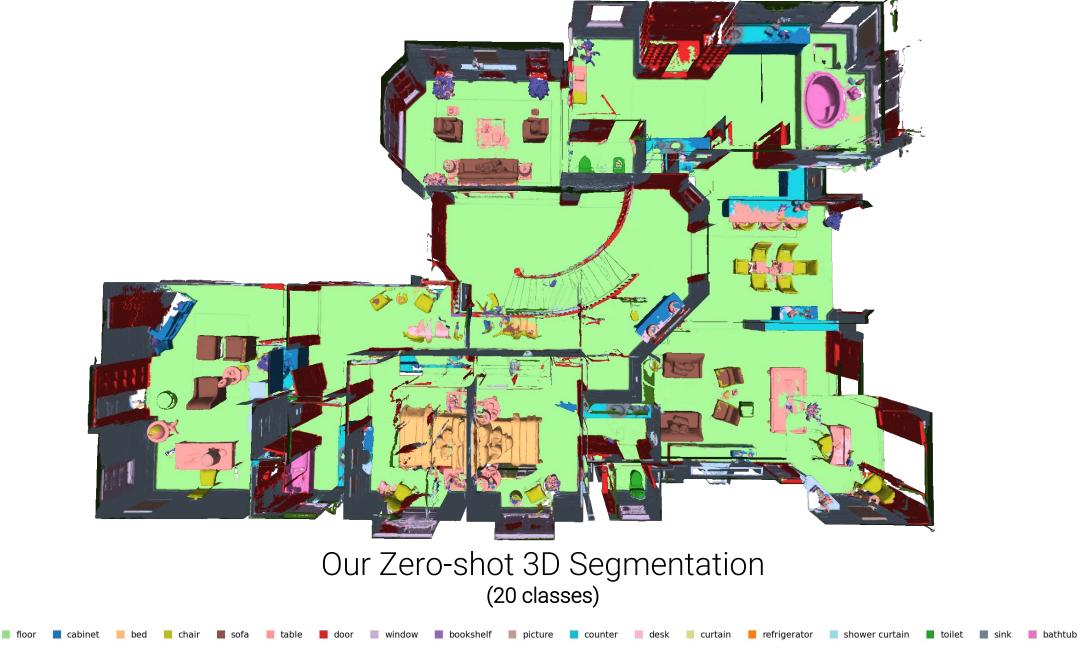


Open-Vocabulary, Zero-shot

3D Semantic Segmentation



📄 wall 📱 floor 📕 cabinet 📕 bed 📕 chair 📕 sofa 📕 table 📕 door 📄 window 📕 bookshelf 📕 picture 📕 counter 📄 desk 📒 curtain 📕 refrigerator 📄 shower curtain 📕 toilet 📕 sink 📕 bathtub 📕 other



wall

71

other



Our Zero-shot 3D Segmentation (160 classes)

wall	cabinet	📕 bed	📕 pot	bathtub	dresser	stand	clock	tissue box	furniture	soap	📕 cup	hanger	📒 urn	paper towel dispenser	toy
door	📒 curtain	night stand	desk	book	📕 rug	drawer	stove	tv stand	air conditioner	thermostat	ladder	candlestick	ale constitue plate	lamp shade	foot rest
ceiling	table	toilet	box 📃	📕 air vent	ottoman	container	washing machine	shoe	📕 fire extinguisher	radiator	garage door	📕 light	pool table	car	soap dish
floor	plant	column	coffee table	faucet	bottle	light switch	shower curtain	heater	curtain rod	📕 kitchen island	📕 piano	scale	јаскет	📕 toilet brush	cleaner
picture	mirror	banister	counter	photo	refridgerator	purse	📕 bin	headboard	printer	paper towel	board	bag	bottle of soap	drum	computer
window	towel	stairs	bench	📕 toilet paper	bookshelf	📕 door way	chest	bucket	telephone	sheet	rope	📕 display case	📒 water cooler	whiteboard	knob72
📒 chair	sink	stool	garbage bin	📕 fan	wardrobe	📒 basket	microwave	candle	blanket	glass	ball	📕 toilet paper holder	📕 tea pot	range hood	📕 paper 🦢
pillow	shelves	vase	fireplace	railing	pipe	chandelier	blinds	📕 flower pot	handle	dishwasher	excercise equipment	📕 tray	stuffed animal	candelabra	projector

Image-based 3D Scene Query

mage Queries Given 3D Geometry

Interactive Demo

Open-vocabulary 3D Scene Exploration

OpenScene - TL;DR

Open up a wide range of applications by leveraging large vision-language models

Inspire future works to shift to open-vocabulary tasks

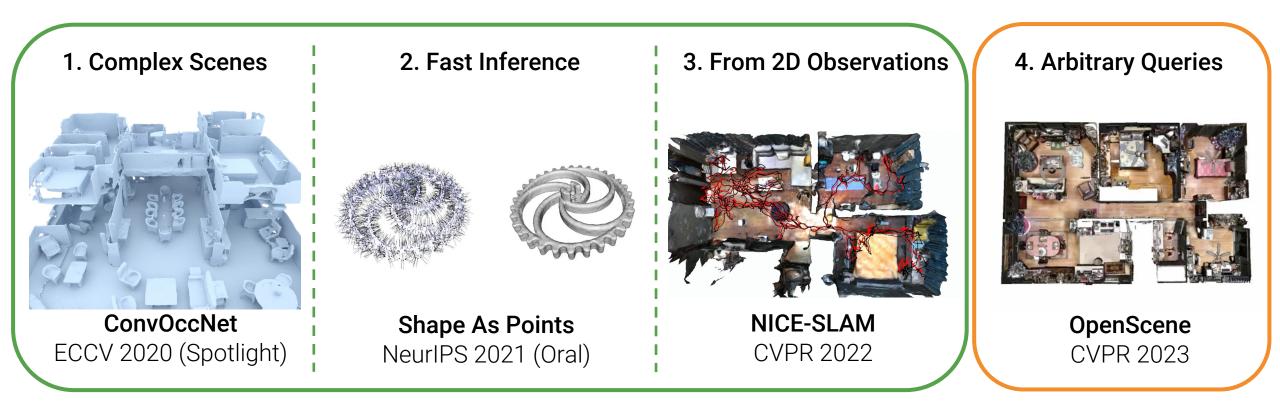
Currently all power comes from 2D foundation models

This Thesis

Develop Neural Scene Representations for **3D Reconstruction** and **3D Scene Understanding**

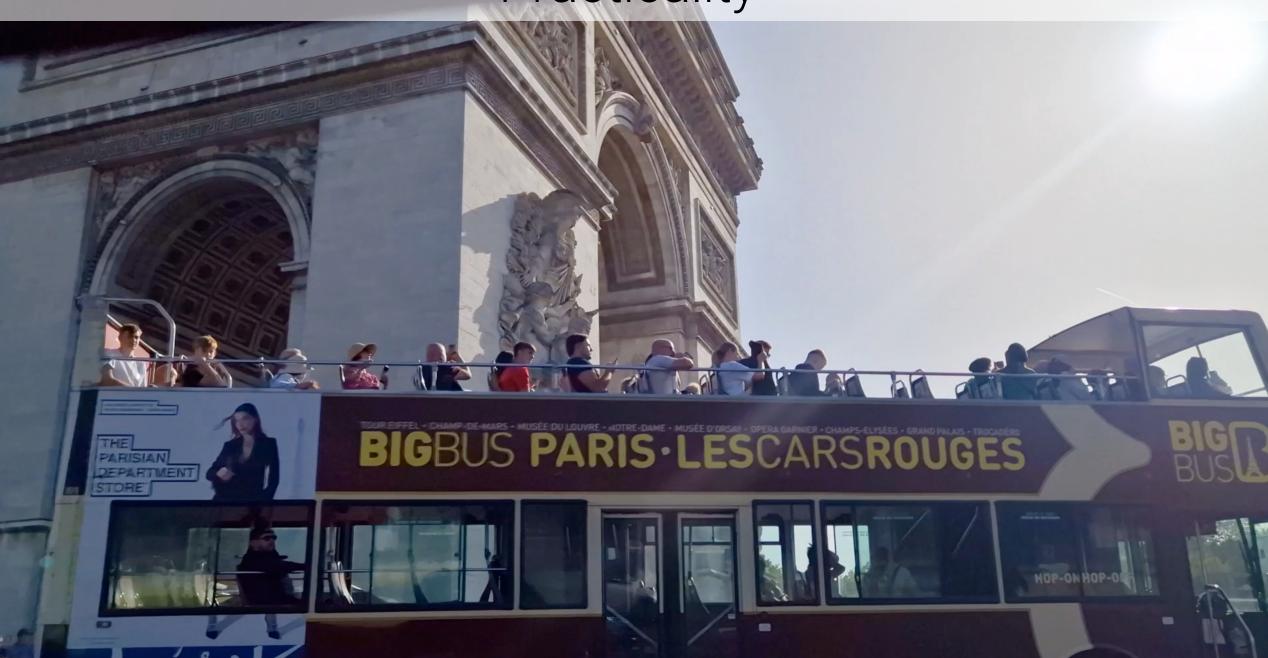
This Thesis

Develop Neural Scene Representations for **3D Reconstruction** and **3D Scene Understanding**



What is Next?

Practicality



Leverage Foundation Models for Everything

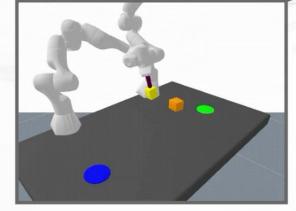
PaLM-E

562B

Robot Mobile Manipulation

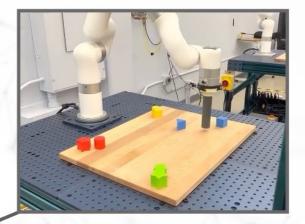
Task: give me the chips from the drawer Next step: Pick up the green chip bag

Task and Motion Panning



Video Credit: PALM-E

Q: How to put yellow block on blue plate? A: Hand the yellow block to other arm **Robot Tabletop Manipulation**



Task: sort blocks by colors into corners Next step: Push blue blocks to the right

Visual Question Answering

Q: What's in the image in emojis? A:

Acknowledgements

Supervisors

- Marc Pollefeys
- Andreas Geiger

External Examiners

Leo Guibas

Vincent Sitzmann

Collaborators

Michael Niemeyer

Michael Oechsle Lars Mescheder

Yiyi Liao

Zihan Zhu

Shengqu Cai

Shaohui Liu

Viktor Larsson

Martin R. Oswald

Zehao Yu

Tom Funkhouser

Kyle Genova

Chiyu "Max" Jiang

Andrea Tagliasacchi

Thank you all for such a wonderful journey!

Neural Scene Representations for 3D Reconstruction and Scene Understanding

Songyou Peng



