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Intelhgent systems interact vv|th 3D enwronments

3D Reconstruction 3D Scene Understandlng
Create digital twins from real scenes ’ Analyze the scene digitally
Video Credit: Yo be - Real e archv part \ ., : //



Key Challenges

[Reconstruct]and 3D Environments
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Reconstruct 3D scenes at scale
Reconstruct 3D scenes at speed

Reconstruct purely from 2D observations
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Key Challenges

Reconstruct and 3D Environments

Reconstruct 3D scenes at scale
Reconstruct 3D scenes at speed

Reconstruct purely from 2D observations

Understand arbitrary concepts in a 3D scene

| earn to understand without labeled 3D data




Research Overview of My PhD

Learn to Reconstruct and Understand 3D Environments



Research Overview of My PhD

Learn to Reconstruct and Understand 3D Environments
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Reconstruct Complex Scenes

NICE-SLAM NICER-SLAM
CVPR 2022 3DV 2024 (Oral)
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Research Overview of My PhD

Learn to Reconstruct and Understand 3D Environments

M | | TOpiC #3:
. Reconstruct from 2D Observations

MonoSDF
NeurlPS 2022

NICE-SLAM NICER-SLAM UNISURF
CVPR 2022 3DV 2024 (Oral) ICCV 2021 (Oral)



Research Overview of My PhD

Learn to Reconstruct and Understand 3D Environments

Topic #4.
Low-to-High Level 3D Scene Understanding

OpenScene
CVPR 2023 ¢



Research Overview of My PhD

Learn to Reconstruct and Understand 3D Environments

. BT

1 ‘ runs now at 50 fps on a GTX 1080 Ti
ConvOccNet MonoSDF Shape As Points KiloNeRF

ECCV 2020 (Spotlight) NeurlPS 2022 NeurlPS 2021 (Oral) ICCV 2021

NICE-SLAM NICER-SLAM UNISURF OpenScene
CVPR 2022 3DV 2024 (Oral) ICCV 2021 (Oral) CVPR 2023 ¢



Develop 3D Neural Scene Representations

This Thesis

for 3D Reconstruction and 3D Scene Understanding

/1. Complex Scenes

e
ConvOccNet
ECCV 2020 (Spotlight)

S

2. Fast Inference

Shape As Points
NeurlPS 2021 (Oral)

3. From 2D Observatich

NICE-SLAM

/4. Arbitrary Queries\

CVPR 2022 /

\_

OpenScene

CVPR 2023 /
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This Thesis

Develop 3D Neural Scene Representations
for 3D Reconstruction and

1. Complex Scenes
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ConvOccNet
ECCV 2020 (Spotlight)
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Learning-based 3D Reconstruction

Neural Network 3D Reconstruction
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What is a good 3D output representation?



3D Representations
Traditional Explicit Representations

Discretization

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019
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3 Seminal Papers at the Same CVPR!
Neural Implicit Representations

Occupancy Networks: Learning 3D Reconstruction in Function Space
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3Google Al Berlin
DeepSDF: Learning Continuous Signed Distance Functions Learning Implicit Fields for Generative Shape Modeling
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Jeong Joon Park':3t  Peter Florence 237 Julian Straub®  Richard Newcombe®  Steven Lovegrove® Zhiqin Chen Hao Zhang
Simon Fraser University Simon Fraser University
1 University of Washington =~ 2Massachusetts Institute of Technology ~ 3Facebook Reality Labs higinc@st haoz@sE
zhiginc@sfu.ca aoz@sfu.ca

16



3D Representations
Neural Implicit Representations

Discretization Continuous

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019
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Limitations
Neural Implicit Representations

Works well for simple objects, but poorly on complex scenes

OccNet GT Mesh

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019
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Limitations
Neural Implicit Representations

3D Location P

Occupancy
Probablllty

Global fo(p, ¥

Features
Encoder ) ,

Fully Connected
Network

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019
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Limitations
Neural Implicit Representations

3D Locatlon P

Occupancy
Probablllty

Global

Fea;ur)es
1D P(x
Encoder I > > '—'>

Fully Connected
Network

 Global latent code = overly smooth geometry
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Limitations
Neural Implicit Representations

3D Location p

Occupancy
Probability

Global f9 (p7 w<x))
Feazur)es J 1
1D P(x
Encoder I > —_—
0

Fully Connectec1

Network

 Global latent code = overly smooth geometry
 Fully-connected architecture = no translation equivariance
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How to reconstruct large-scale 3D scenes with

neural implicit representations?



Main Idea
Convolutional Occupancy Networks

Input x 4~¢




Main Idea
Convolutional Occupancy Networks

Input x 4~ A:
PointNet
Encoder
Y ¥V 2D Feature Plane

2D Plane Encoder: Project point features onto the canonical plane
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Main Idea
Convolutional Occupancy Networks
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Input x 4~¢

Features

{ - ol %
PointNet i . p‘ ¢(Pa )

Encoder

xr

y

2D Plane Encoder: Project point features onto the canonical plane
« 2D Plane Decoder: Processed by UNet, query features via bilinear interpolation
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Main Idea
Convolutional Occupancy Networks

Input x 42 Az Az 3D Locatlon P Occupancy
1 Probab|||ty
Features fo(p, ¢ p X)
X)
PointNet d’ p;
Encoder _>
/
! ¥V 2D Feature Plane K

2D Plane Encoder: Project point features onto the canonical plane
« 2D Plane Decoder: Processed by UNet, query features via bilinear interpolation

» Occupancy Net: Shallow MLP fy(+)
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Input x 4~°
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Main Idea
Convolutional Occupancy Networks

Az Az 3D Locatlon P Occupancy
Probab|I|ty
Features fo(p, @D P X)
X
PointNet : [/ 1/1 P-
Encoder 4ECEER\TN/EE _>
L] .r
 Vad

J
Y 2D Feature Plane

Can wm \

For now, features only on the ground plane...

27



Main Idea — “Tri-plane”
Convolutional Occupancy Networks

Input x A% IZ
n . . i .I C
[ . @ n
. Bl PointNet } 1
- S Encoder “
; ;

Project features on X, Y, Z canonical planes




Main Idea — 3D Volume
Convolutional Occupancy Networks

Input x 4* A: A Trilinear 3D Location p Occupancy
/[ Interpolation’f i Probability
W /I Features fo(p ’¢(1p’x))
PointNet it ”w(P, X)
Encoder y o \—P >
. P | - A‘n / _’ 0
y ¥y 3D Feature Volume

¥y 3D Feéture \/OIume

Encode local information into a 3D feature volume
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Comparison

Occupancy Networks 3D Location p

== global feature

Feﬁur)es -— heavy FC network
1D X
nput x EENEEE —> | ——> > == NO translation equivariance

—_

o

Convolutional Occupancy Networks ,- 3D Location p

Bilinear
Interpolation

2D Encoder
+ 2D Conv

—_

2D Encoder
+ 2D Conv

Input x

== |ocal feature
Bilinear

‘ Features
¥(p, ) == shallow FC network
> > : .
0 <= translation equivariance
Interpolation d
2D Encoder x
+ 2D Conv /
y 2D Feature Planes Interpolation

’ Bilinear
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Results



Object-Level Reconstruction

Input OccNet Ours Ours GT Mesh
(Tri-plane) (3D Volume)
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Scene-Level Reconstruction

Train and evaluate on synthetic room

Input GT Mesh
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Scene-Level Reconstruction

OccNet fails on room-level reconstruction

Input OccNet

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019
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Scene-Level Reconstruction
SPSR requires surface normal, output is noisy

Input SPSR

(Screened Poisson Surface Reconstruction)

Kazhdan and Hoppe: Screened Poisson Surface Reconstruction. ToG, 2013 37



Scene-Level Reconstruction
Ours preserves better details

—
SN r——

Input Ours

Peng, Niemeyer, Mescheder, Pollefeys, and Geiger: Convolutional Occupancy Networks. ECCV, 2020
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Scene-Level Reconstruction

OccNet SPSR Ours



Large-Scale Reconstruction
Reconstruct a big house in Matterport3D

 Fully convolutional model

« Sliding-window evaluation

« Scale to any size

 Trained on synthetic crops
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Our reconstruction output 40



Large-Scale Reconstruction
Reconstruct large-scale scenes in Matterport3D
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ConvOccNet - TL;DR

Three hybrid representations for neural fields

a) Ground plane b) Tri-plane ¢) 3D volume

CNN’'s translation equivariance rocks

Synthetic-to-real generalization



“Tri-plane” Representations

Bilinear
Interpolation

Bilinear
Interpolatlon

% Bilinear
Interpolation

Reviewer 2: “What is the point of having that 3-plane representation?”
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“Tri-plane” Representations
High Fidelity 3D-Aware View Synthesis

—— Latent
512 scalars
Mapping Intermediate latent, 512 scalars
Network
; Tri-ol Final image I3sg
° ri-planes 512x512x3
g Feature m@ps 3 images Features I¢ SFyle_GA_‘NZ
256x256x45 256x256x32 Neural Renderer 128x128x32 Discriminator
N ~ \
- Colors,
33 Tri-plane BT Volume
< Decoder tys Rendering Real
(Z32_ e or
z32_ 7 Raw image | not
-~ RGB
128x128x3
il N
StyleGAN2 g
Generator Camera params P 8

25 scalars

Chan et al.: Efficient Geometry-aware 3D Generative Adversarial Networks. CVPR 2022



“Tri-plane” Representations
Efficient 4D View Synthesis

Cao and Johnson: HexPlane: A Fast Representation for Dynamic Scenes. CVPR 2023
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“Tri-plane” Representations
Robot Grasping

Structured feature grids C Grasp center t q
z _.--=" (x,y,2) —| Affordance
Implicit -1 I
I— Functions
r w
Local feature ¥t, ¥p

'— Geometry 0
Implicit L~

________ (x’, y', z’) — | Function

Query point p

Jiang et al.: Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations. RSS 2021 46



ConvOccNet - Limitations

3D Location p

== \/ery slow inference l

Features

(%)

For a grid of 1283, > 2 million MLP forward passes !

Shape As Points: A Differentiable Poisson Solver

Songyou Peng'-? Chiyu “Max” Jiang* Yiyi Liao?3"  Michael Niemeyer?3

Marec Pollefeys!+* Andreas Geiger?3

'ETH Zurich 2Max Planck Institute for Intelligent Systems, Tiibingen
3University of Tiibingen 4Microsoft
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Shape As Points

A Differentiable Point-to-Mesh Layer

- -

No network evaluation,

Peng, Jiang, Liao, Niemeyer, Pollefeys, and Geiger: Shape As Points: A Differentiable Poisson Solver. NeurlPS 2021



SAP
12 ms

ConvOccNet
327 ms

GT Mesh




ConvOccNet - Limitations

== Very slow inference

&) We have SAP

== Only reconstruct from 3D noisy point clouds

Can we online reconstruct purely from 2D observations?



ConvOccNet - Limitations

== \/ery slow inference

&) We have SAP

== Only reconstruct from 3D noisy point clouds

()dZ? NICE-SLAM: Neural Implicit Scalable Encoding for SLAM

Zihan Zhu'»?* Songyou Peng®#*  Viktor Larsson? Weiwei Xu! Hujun Bao!
Zhaopeng Cuil”™  Martin R. Oswald?? Marc Pollefeys?©

1State Key Lab of CAD&CG, Zhejiang University ~ 2ETH Zurich  3Lund University
AMPI for Intelligent Systems, Tiibingen *University of Amsterdam  ®Microsoft



NICE-SLAM
Neural Implicit Scalable Encoding for SLAM

p
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RGB-D Sequences . A8

40x Speed
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This Thesis

Develop 3D Neural Scene Representations
for 3D Reconstruction and 3D Scene Understanding

/1. Complex Scenes

2. Fast Inference 3. From 2D Observatich

Ao -
ConvOccNet

ECCV 2020 (Spotlight)

NICE-SLAM

CVPR 2022 /

Shape As Points
NeurlPS 2021 (Oral)

S
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Input 3D Geometry
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Input 3D Geometry

wall floor M cabinet bed chair [l sofa table M door
window [ counter curtain M toilet M sink | bathtub M other Bl unlabeled

S E i o "
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Traditional 3D Scene Understanding
(e.g. Semantic Segmentation)
Only train and test on a few common classes
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= R aand

Input 3D Geometry

3D Scene Understanding Tasks w/o Labels

« Affordance prediction
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Example:

“Where can I sit?”

3D Scene Understanding Tasks w/o Labels

« Affordance prediction
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Input 3D Geometry

3D Scene Understanding Tasks w/o Labels

Affordance prediction

Material identification

Physical property estimation

Rare object retrieval

Activity site prediction

Fine-grained semantic segmentation

Many more...
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How to learn a scene representation to handle all these tasks
without labeled 3D data”



This Thesis

Develop 3D Neural Scene Representations
for 3D Reconstruction and

4. Arbitrary Queries

OpenScene
CVPR 2023
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Key Idea

Co-embed 3D Fea

eblanket

Jowel onight stand

edresser

Lstool eodrawer
oChair

> 'Sgcf)%toman

eskbed
Jfaucet .coumﬁire e

eSink
Jamp floor
eVas ot ceiling
SR plant

Jridgeelves

N":ﬁdoor
@WINAdOW g

_ eCurtain
Jfireplace

3D Geometry

CLIP Text Features

(visualize with T-SNE)

‘ures with CLIP Features

RGB Images
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Key Idea

Co-embed 3D Fea

.
leather

N—" glasi

openable

3D Geometry

CLIP Text Features

(visualize with T-SNE)

‘ures with CLIP Features

RGB Images
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How to Learn Such Text-lmage-3D Co-Embeddings?



Step 1: Multi-view Feature Fusion

\ ,. OpenSeg [1]
fglv < Wh LSeg [2]
3= \ >

R
/ '

3D Geometry Per-pixel Features RGB Images

(visualize with PCA)

[1] Ghiasi, Gu, Cui, Lin: Scaling Open-Vocabulary Image Segmentation with Image-Level Labels. ECCV 2022
[2] Li, Weinberger, Belongie, Koltun, Ranftl: Language-driven Semantic Segmentation. ICLR 2022 66




Step 2: 3D Feature Distillation

fZD

f3D

L =1 — cos(f?P, £3D)

3D Geometry

67/



Inference: 2D-3D Ensemble

fZD

i
a

s|quiasug]
ae-ac

3D Geometry 2D-3D Ensemble Features

(visualize with PCA)
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Open-Vocabulary, Zero-shot
3D Semantic Segmentation



wall

floor

W cabinet

bed

[ chair

W sofa

table

M door

Input 3D Geometry

window [ bookshelf [ picture W counter desk

curtain

W refrigerator

shower curtain

M toilet

W sink

[ bathtub

M other
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wall

floor

W cabinet

bed

chair

W sofa

table

I door

Our Zero-sh

window

T RT——

(20 classes)

I bookshelf

picture

M counter

desk

curtain

ot 3D Segmentation

W refrigerator

shower curtain

M toilet

M sink

[ bathtub

M other
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wall
door
ceiling
floor
picture
window
chair
pillow

cabinet
curtain
table
plant
mirror
towel
sink
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bed

night stand
toilet
column
banister
stairs

stool
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pot
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box

coffee table
counter
bench
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fireplace

bathtub
book

air vent
faucet
photo

toilet paper
fan

railing

dresser

rug

ottoman
bottle
refridgerator
bookshelf
wardrobe
pipe

Our Zero-shot 3D Segmentation
(160 classes)
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stand
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tv stand
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headboard
bucket
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Image-based 3D Scene Query



Ryl J
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Image Queries Given 3D Geometry




Interactive Demo

Open-vocabulary 3D Scene Exploration



Text queries:

glass
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OpenScene - TL;DR

Open up a wide range of applications by leveraging large
vision-language models

Inspire future works to shift to open-vocabulary tasks

== Currently all power comes from 2D foundation models



This Thesis

Develop Neural Scene Representations
for 3D Reconstruction and

4. Arbitrary Queries

OpenScene
CVPR 2023
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This Thesis

Develop Neural Scene Representations
for 3D Reconstruction and 3D Scene Understanding

/1. Complex Scenes

ConvOccNet
ECCV 2020 (Spotlight)

S

2. Fast Inference

Shape As Points
NeurlPS 2021 (Oral)

3. From 2D Observati&

NICE-SLAM

CVPR 2022 /

\_

/4. Arbitrary Queries\

OpenScene

CVPR 2023 /
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What is Next?



Practicality




L everage Foundation Models for Everything

Robot Mobile Manipulation

Task: give me the chips from the drawer

Next step: Pick up the green chip bag

Task and Motion Panning

=

Video Credit: Q: How to put yellow block on blue plate?
PALM-E A: Hand the yellow block to other arm

PaLM-E
5628B

Robot Tabletop Manipulation

\\\ \ ; w’

-——

A

Task: sort blocks by colors into corners

Next step: Push blue blocks to the right

Visual Question Answering

Q: What’s in the image in emojis?

AQDeBROVOS
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