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Abstract—Apparent personality and emotion analysis are both central to affective computing. Existing works solve them individually. In
this paper we investigate if such high-level affect traits and their relationship can be jointly learned from face images in the wild. To this
end, we introduce PersEmoN, an end-to-end trainable and deep Siamese-like network. It consists of two convolutional network
branches, one for emotion and the other for apparent personality. Both networks share their bottom feature extraction module and are
optimized within a multi-task learning framework. Emotion and personality networks are dedicated to their own annotated dataset.
Furthermore, an adversarial-like loss function is employed to promote representation coherence among heterogeneous dataset
sources. Based on this, we also explore the emotion-to-apparent-personality relationship. Extensive experiments demonstrate the
effectiveness of PersEmoN.
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1 INTRODUCTION

P ROLIFERATION of cameras, availability of cheap storage
and rapid developments in high-performance comput-

ing have enabled exciting new developments in Human-
Computer Interaction (HCI), in which affective computing
plays an inevitable role. For instance, in video-based inter-
views, automatically computed personalities of candidates
can serve as an important cue to assess their qualifications.
However, affective computing remains a challenging prob-
lem in both computer vision and psychology despite many
years of research.

Facial appearances strongly influence our judgement
of the emotion and personality of other people. Such a
judgement usually can be made after a very short time [1],
although different studies have not yet reached a consensus
about the accuracy of such appearance-based first impres-
sions [2, 3]. As mentioned in a recent survey on personality
computing [4], state-of-the-art studies consider either the
actual personality traits measured from self or acquaintance
reports, or the so-called apparent personality traits, which
represent the impressions about someone’s personality from
an external observer’s point of view.

In this paper, we are interested in the problem of ana-
lyzing apparent personality, emotion and their relationship.
Apparent personality reflects the coherent patterning of
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behavior, cognition and desires (goals) over time and space,
as perceived by an external observer. Emotion is an integra-
tion of feeling, action, appraisal, and wants at a particular
time and location [5]. We can understand the emotion-to-
apparent-personality relationship as weather to climate, i.e.
what one expects is apparent personality while what one
observes in a particular moment is emotion. Although they
have distinct definitions, the relationship between person-
ality and emotion has been revealed previously. Eysenck’s
personality model [6] showed that neurotics can be more
sensitive to external stimulation and easily become upset or
nervous due to minor stressors. Extraversion on the other
hand has been linked to higher sensitivity to potentially
rewarding stimuli, which in part explains the high levels
of positive affect found in extraverts, since they will more
intensely feel the excitement of a potential reward [7].

Apparent personality estimation has become an increas-
ingly popular field of research; related challenges, e.g.
ChaLearn 2016 on first impressions [8], together with pub-
licly available datasets, have attracted wide attention. In this
paper, we also focus on the task of apparent personality
prediction, where we consider the Big Five personality
traits (Extraversion, Agreeableness, Conscientiousness, Neuroti-
cism and Openness) [8]. Our emotion analysis is based on
Russell’s circumplex model of affect [9], in which emotions
are distributed in a two-dimensional circular space spanned
by the dimensions of arousal and valence, instead of classify-
ing pre-defined emotion categories. This is advantageous in
the sense that it allows for a finer-grained representation of
expressions and emotional states [10].

Deep convolutional neural networks (CNNs) reign
undisputed as the new de-facto method for face based appli-
cations such as face recognition [11, 12], alignment [13], and
so on. This motivates us to study the following fundamental
problems:
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1) As both face recognition and affective computing
can have faces as input, how transferable are deeply
learned face representations for emotion and appar-
ent personality analysis?

2) Is it beneficial to explore emotion, apparent person-
ality and their relationship in a single deep CNN?

These tasks are non-trivial. Among the most significant
challenges are:

• The scarceness of large-scale datasets which encom-
pass both emotion and apparent personality an-
notations for learning such a rich representation
for apparent personality, emotion and emotion-to-
apparent-personality relationship. In particular, ex-
isting datasets only contain emotion attributes, while
other datasets may only be annotated with apparent
personality labels. Manually annotating data for both
emotion and apparent personality may partly allevi-
ate this. However, it is costly, time-consuming, and
error-prone due to subjectivity.

• The discrepancy of existing datasets: Datasets are
usually collected in different environments which
may exhibit significant variations in illumination,
scale, pose, etc. Each dataset may have vastly dif-
ferent statistical distributions.

• Annotations of emotion and/or apparent personality
can be done at the image/frame level [14, 15] or at
the video level [8]. How can we encapsulate both
frame and video level understanding into a single
network?

We address these challenges by proposing PersEmoN, an
end-to-end trainable and deep Siamese-like network [16].
It consists of two CNN branches, which we call emotion
network and personality network, respectively. Emotion
network and personality network share their bottom feature
extraction module and are optimized within a multi-task
learning framework. An adversarial-like loss function is
further employed to promote representation coherence be-
tween heterogeneous dataset sources. We show that PersE-
moN works well for analyzing apparent personality, emo-
tion and their relationship. A demo version of this paper
has been presented in [17].

2 RELATED WORK

The wealth of research in this area is such that we cannot
give an exhaustive review. Instead, we focus on describing
the most important threads of research on using deep learn-
ing for emotion and apparent personality analysis.

2.1 Deep Learning for Emotion Analysis
Emotion analysis has been investigated from different per-
spectives. [18] proposed a deep belief network for unsuper-
vised audio-visual emotion recognition. However, its fea-
sibility of large-scale supervised learning remains unclear.
[19] investigated the usage of deep CNNs and Bayesian clas-
sifiers for group emotion recognition in the wild. Apart from
visual inputs, the system also needs the scene context (such
as background, clothes, etc.) which may not be available in
many scenarios. [20] introduced convolutional deep belief

networks to learn salient multi-modal features of emotions.
Although workable as reported, their network structure is
shallow, and it remains unclear how to transfer rich feature
hierarchies from very deep networks for different modalities
in their system.

Unlike popular classification approaches for discrete
emotion categories, many recent works delve into different
representations of human expressions and emotions. For
instance, EmotioNet [21] provides an accurate, real-time
algorithm for the automatic annotation of a million facial
expressions in the wild. However, the performance gap be-
tween using EmotioNet and human-annotated datasets for
training emotion networks is not well understood. Other ap-
proaches try to analyze emotion using continuous arousal-
valence space [9]. For instance, Mollahosseini et al. [22]
introduce a large-scale emotion dataset and show that their
deep neural network outperforms conventional machine
learning methods and off-the-shelf facial expression recog-
nition systems. However, it requires a specially designed
sampling strategy to alleviate data imbalance problems. An
ensemble of memory networks [23], multiple datasets for
cascade learning [24], and multiple LSTM layers [25] have
been employed to predict the emotion scores. Due to the
complexity of these networks, they are difficult to train
however.

2.2 Deep Learning for Apparent Personality Analysis

Güçlütürk et al. [26] introduced a deep audio-visual residual
network for multimodal apparent personality trait recogni-
tion. In their extended version [27], the authors analysed
different cues (visual, acoustic and audiovisual). This may
not be very practical as some of the cues could be missing
during deployment of the system. [28] developed a volu-
metric convolution and Long-Short-Term-Memory (LSTM)
based network to learn audio-visual temporal patterns.
Although it outperforms many other approaches [8], its
performance on pure visual inputs is not reported, which
makes it difficult to understand the merits of their visual
stream.

[29] identified apparent personality with a deep bimodal
regression framework based on both video and audio in-
puts. However, the performance of all above-mentioned
methods relies heavily on ensemble strategies, whereas we
are able to achieve better results with a single visual stream
with the proposed PersEmoN.

Gürpınar et al. [30] employed a pre-trained CNN to
extract facial expressions as well as ambient information
for apparent personality analysis. Although they achieve
promising results, the system is not end-to-end trainable
and needs a stand-alone regressor. A time-continuous pre-
diction approach that learns the temporal relationships,
rather than treating each time instant separately, was estab-
lished in [31] for the prediction of Big Five traits, Attractive-
ness and Likeability. Nevertheless, a database annotated in
a time-continuous manner is needed in their setting, which
is difficult to obtain in practice.

Ventura et al. [32] investigated the reason of the success
of CNN in apparent personality analysis. They showed that
the face provides most of the discriminative information for
this task. This motivated us to investigate the feasibility of
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using a very deep face verification network for this task. For
more related work on apparent personality analysis, please
refer to recent surveys [33, 34].

3 METHODOLOGY

In comparison to the aforementioned studies, our work aims
to investigate whether emotion and apparent personality
analysis can benefit from the face representations learned
from a well-annotated face recognition dataset, without
having a dataset with both emotion and apparent personality
annotations. To this end, we show that state-of-the-art face
recognition networks perform well for both emotion and
apparent personality analysis. We also explore the feasibility
of jointly training emotion and apparent personality analy-
sis. More specifically, we propose PersEmoN within a multi-
task learning framework to learn better representations for
both emotion and apparent personality than those obtained
by solving each task individually. On top of such repre-
sentations, we demonstrate the feasibility of establishing a
good emotion-to-apparent-personality relationship.

3.1 PersEmoN Overview

An overview of PersEmoN can be found in Fig. 1. We first
detect and align faces for both apparent personality and
emotion datasets with an open version of MTCNN [13].
For the apparent personality dataset, we employ a sparse
sampling strategy. The personality network consists of a
feature extraction module (FEM) and a personality analysis
module (PAM) to predict the Big Five personality factors.
A consensus aggregation function is employed to aggregate
raw apparent personality scores before feeding them into
the PAM. Similarly, the emotion network shares the FEM
with the personality network and has its own emotion
analysis module (EAM) targeted at predicting the arousal
and valence dimensions [35] of emotion. An emotion-to-
apparent-personality relationship analysis module (RAM) is
also employed.

In the training phase, the system is aware of which
dataset the image comes from and will automatically assign
the image to its own branch. For instance, the images from
the apparent personality set go through FEM and PAM.
Meanwhile, they can also go through FEM and EAM and
finally output the apparent personality traits through RAM.
In the same way, the images from the emotion set can go
through FEM and EAM to yield emotion outputs.

In the testing phase, the system can estimate the emotion
and the apparent personality from EAM and PAM sepa-
rately. During inference, we could use FEM and PAM to
obtain the apparent personality traits. Similarly, we could
use FEM and RAM to get the emotion outputs. As a side
product, we could even use RAM to produce the apparent
personality attributes from emotion (arousal and valence)
inputs. Note that in the testing phase the proposed method
also works with video-based emotion datasets by processing
each video frame individually.

The detailed network structure of the various modules
of PersEmoN is summarized in Table 1. In the following sec-
tion, we elaborate on the different components mentioned
above.

TABLE 1
Detailed architecture of PersEmoN. Conv denotes convolution units

that may contain multiple convolution layers; residual units are shown in
square brackets. For example, [33, 64]× 4 denotes 4 cascaded

convolution layers with 64 filters of size 33, and S2 denotes stride 2. FC
is a fully connected layer, for which the number of output neurons are

reported.

Module Layer Details

Conv 1
[3× 3, 64]× 1, S2[

3× 3, 64
3× 3, 64

]
× 1

Conv 2
[3× 3, 128]× 1, S2[

3× 3, 128
3× 3, 128

]
× 2

Conv 3
[3× 3, 256]× 1, S2[

3× 3, 256
3× 3, 256

]
× 4

Conv 4
[3× 3, 512]× 1, S2[

3× 3, 512
3× 3, 512

]
× 1

FEM

FC1 512
FC2 5PAM Pooling AVE

EAM FC3 2
FC4 128RAM FC5 2

Coherence FC6 2

3.2 Personality and Emotion Networks

A shared FEM, embodied with a truncated SphereFace net-
work [36] with its last two layers removed, is employed for
both branches. Those two branches are dedicated to emotion
and apparent personality-annotated datasets, respectively,
and jointly optimized with the FEM.

To utilize rich information from each video frame for
more effective network training, the personality network
operates on a pool of sparsely sampled face frames from
the entire video. Each face frame in this pool can produce
its own preliminary prediction of the apparent personality
score. We take inspiration from recent advances in video
based human action recognition [37] and employ a consen-
sus strategy among all the face frames from each video to
give a video-level prediction on the apparent personality.
The loss values of video-level predictions, other than those
of face-level ones, are optimized by iteratively updating the
model parameters. We use V and Y to represent a generic
video input and its ground truth label. Given the ith video
{V P

i ,Y
P
i }(i ∈ NP ), where NP stands for the index set of

apparent personality videos, and P denotes the data source,
i.e. apparent personality dataset here, we divide it into K
segments {SP

i1, S
P
i2, · · · , SP

iK} of equal duration. Now our
personality network models a sequence of faces as follows:

P(Vi,W
P ) =P(IPi1, I

P
i2, · · · , IPiK ,WP )

=G(F(IPi1,WP ),F(IPi2,WP ), · · · ,F(IPiK ,WP ))
(1)

Here (IPi1, I
P
i2, · · · , IPiK) is a pool of face frames, where

each face IPik is randomly sampled from its correspond-
ing segment SP

ik. The function F(IPik,WP ) represents the
personality network with parameters WP which operates
on face IPik and provides preliminary apparent personality
scores. The segmental consensus function G aggregates the
raw outputs from multiple face frames to obtain a final
apparent personality score for each video. Although the
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Fig. 1. Workflow of the proposed PersEmoN. The colours in the diagram represent the data flow of the system. In the training phase, the system is
aware of which dataset the image comes from and will automatically assign the image to its own branch. During inference, we can use FEM and
PAM to obtain the apparent personality traits. Similarly, we can use FEM and RAM to obtain the emotion outputs. The boxes preceding PAM and
EAM are the feature representations. Please refer to the text for more details.

proposed method is generic and applicable for a wide
range of functions such as max, average, recurrent aggregation,
we use the average function similar to [37]. Based on this
consensus, we optimize the personality network with the
smooth `1 loss function [38] defined as:

Lper(W
P ) =

∑
i∈NP

smooth`1(Y
P
i −P(V P

i ,W
P )) (2)

The smooth `1 function is given below; m represents a
margin parameter.

smooth`1(x) =

{
1
2 (x)

2 |x| < m,

|x| − 0.5 otherwise.
(3)

The emotion network works in a simpler manner by
directly processing input faces, since frame level annotations
are already available. More specifically, given a face image
{IEi ,YE

i }(i ∈ NE), the emotion network produces emotion
scores as:

E(IEi ,W
E) = F(IEi ,WE) (4)

Similarly, the loss function for the emotion network is:

Lemo(W
E) =

∑
i∈NE

smooth`1(Y
E
i −E(IEi ,W

E)) (5)

3.3 Representation Coherence
People may appear in various scales and poses under differ-
ent illumination conditions for different datasets. Besides,
each dataset may exhibit different statistical distributions
and annotation bias. Representations learned from each
dataset individually without pursuing coherence between
them may present significant discrepancy. A representation
with good transferability should be dataset-invariant in the
sense that the learned representations are coherent for dif-
ferent data samples from different datasets [39]. This is also
beneficial to exploring the emotion-to-apparent-personality
relationship in our case. To this end, a classifier is trained
to classify which dataset the input image comes from. Af-
ter convergence of the system, it cannot distinguish them

because the final representation is dataset-invariant. This
strategy reduces over-fitting by learning a generalizable rep-
resentation, which is applicable not only to the tasks in ques-
tion, but also to other tasks with significant commonalities.
In our setting, since a shared network backbone is employed
by two tasks, additional tasks act as a regularization which
requires the system to perform well on a related task.

We take inspiration from [39] by training a dataset
classifier, denoted as D with parameters WD, to perform
binary classification to distinguish which dataset a particu-
lar datum comes from. For each feature representation from
the FEM, we learn the dataset classifier with the following
softmax loss. In each mini-batch, the loss is as follows when
sampling from the personality dataset:

LP
D(W

D) = −
∑
i∈NP

K∑
k=1

log q(IPik,W
P ,WD) (6)

where q(I,W,WD) = softmax(WD · F(I,W )). Similarly,
the loss for samples j from the emotion dataset is:

LE
D(W

D) = −
∑
j∈NE

log q(IEj ,W
E ,WD) (7)

The overall loss for each mini-batch can be computed:

LD(WD) = LP
D(W

D) + LE
D(W

D) (8)

As in [39], an adversarial-like learning objective is intro-
duced in the FEM which aims at “maximally confusing” the
two datasets by computing the cross entropy between the
output predicted dataset labels and a uniform distribution
over dataset labels:

Ladv(W
P ,WE) = −

∑
i∈NP

K∑
k=1

log q(IPik,W
P ,WD)

−
∑
i∈NE

log q(IEi ,W
E ,WD)

+ log q(IPik,W
E ,WD)

+ log q(IEi ,W
P ,WD)

(9)



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 5

Similar to the adversarial-learning, we perform iterative
updates for both LD(WD) and Ladv(W

P ,WE) given the
fixed parameters from the previous iteration.

3.4 Emotion-to-Apparent-Personality Relationship
Analysis
Here we investigate whether apparent personality can be
inferred directly from emotion attributes. This is challenging
due to the paucity of datasets which encompass both emo-
tion and apparent personality annotations for us to learn
such a relationship. We insert a relationship analysis module
(RAM), which receives the emotion scores from the emotion
analysis network and predicts apparent personality scores.
More specifically, the input of RAM can be obtained by:

E(V P
i ,W

E) =Ei = E(IPi1, I
P
i2, · · · , IPiK ,WE)

=(F(IPi1,WE),F(IPi2,WE), · · · ,FE(IPiK ,W
E))

(10)
As we already defined, (IPi1, I

P
i2, · · · , IPiK) is a pool of faces

from the apparent personality dataset where each face IPik
is randomly sampled from its corresponding segment SP

ik.
F(IPik,WE) represents the emotion network with param-
eters WE which operates on face IPik to give preliminary
results on the emotion scores. RAM employs the same
consensus strategy among all the faces from the video to
output the aggregated apparent personality score R of video
V P
i :

R(Ei,W
R) = R(G(Ei),W

R), (11)

where WR represents the weights of RAM. RAM is trained
by optimizing the following objective function:

LRAM (WR) =
∑
i∈NP

smooth`1(Y
P
i −R(Ei,W

R)) (12)

3.5 Overall Loss Functions
Every module of PersEmoN is differentiable, allowing end-
to-end optimization of the whole system. The learning pro-
cess of PersEmoN aims to minimize the following loss:

L = λ1Lper(W
P ) + λ2Lemo(W

E) + λ3LD(WD)
+ λ4Ladv(W

P ,WE) + λ5LRAM (WR)
(13)

4 EXPERIMENTS

4.1 Dataset and Evaluation Protocol
We choose two large challenging datasets to evaluate PersE-
moN. The Aff-Wild emotion dataset [35] consists of 298
YouTube videos (252 for training and 46 for testing) with
a total length of about 30 hours (over 1M frames). The
videos show the reaction of individuals to various clips
from movies, TV series, trailers, etc. Each video is labeled
by 6-8 annotators with frame-wise valence and arousal
values, with a total of 200 annotators. Both valence and
arousal values range from −1 to 1. The representation of
emotions via arousal/valence values is illustrated in Fig. 2.
For apparent personality, we use the ChaLearn personality
dataset [8], which consists of 10k short video clips with 41.6
hours (4.5M frames) in total. In this dataset, people face and
speak to the camera. Each video is annotated with apparent
personality attributes as the Big Five personality traits in

Arousal

Valence

high

+_

alert

excited

happy

tense

nervous

upset

sad

depressed

bored relaxed

serene

content

low

Fig. 2. Emotion wheel showing the connection between emotion cate-
gories and arousal-valence space.

[0, 1]. The annotation was done via Amazon Mechanical
Turk.

To assess the quality of emotion predictions from PersE-
moN, we calculate the mean square error (MSE) between the
predicted values of emotion scores and the ground truth.
For the evaluation of the apparent personality recognition,
we apply two metrics used in the ECCV 2016 ChaLearn
First Impressions Challenge [8], namely mean accuracy A
and coefficient of determination R2, which are defined as
follows:

A = 1− 1

N t

Nt∑
i

|YP
i −Pi|, (14)

R2 = 1−
Nt∑
i

(YP
i −Pi)

2/
Nt∑
i

(ȲP −Pi)
2 (15)

where N t denotes the total number of testing samples, YP

the ground truth, Pi the prediction, and ȲP the average
value of the ground truth.

4.2 Implementation

We initialize FEM with a truncated 20 layer version of
the SphereFace model [36]. PAM is embodied with a fully
connected (FC) layer with 5 outputs, while EAM has only
2 output neurons in the FC layer. We use sigmoid and
tanh to squash the outputs for PAM and EAM respectively.
We use a single-hidden-layer feed-forward network to ana-
lyze the emotion-to-apparent-personality relationship. More
specifically, RAM is implemented with two FC layers where
the first one receives 2 emotion scores as input and output
128 features with ReLU nonlinearity. The same consensus
function and sigmoid nonlinearity are used to obtain the
apparent personality traits for RAM. Additional architecture
details are provided in Table 1.

PersEmoN is implemented in Caffe [40]. We train the
whole network with an initial learning rate of 0.01. For each
mini-batch, we randomly select 100 images from the Aff-
Wild dataset and 10 videos from Chalearn. For each video,
10 frames are further sparsely sampled in a randomized
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TABLE 2
Results (MSE) of emotion task on Aff-Wild.

Method Arousal Valence
CNN-M [35] 0.140 0.130
MM-Net [23] 0.088 0.134

FATAUVA [24] 0.095 0.123
DRC-Net [25] 0.094 0.161

PersEmoN (ours) 0.108 0.125

manner, i.e. K = 10. Hence, the overall batch size is equal
to 200. We train the network for 56k iterations and decrease
the learning rate by a factor of 10 in the 32kth and 48kth iter-
ation. As the main goal of the system is to estimate emotion
and apparent personality attributes, Lemo and Lper should
be the main objective functions, and hence their weights are
set to λ1 = λ2 = 1. Other loss functions serve as regularizers
to further improve the results, and hence their weights are
set to relatively smaller values, λ3 = λ4 = λ5 = 0.1. The
margin parameter in all the smooth `1 loss (Eq. (3)) is set to
m = 0.05.

4.3 Evaluation of Emotion
We first report the results of emotion prediction on the Aff-
Wild dataset. PersEmoN is compared with a strong baseline
method CNN-M and 3 benchmark methods from the Aff-
Wild challenge [35]. More specifically, MM-Net [23] consists
of a carefully designed deep face feature learner to learn
discriminative features for affective levels and then em-
ploys multiple memory networks for feature aggregation.
FATAUVA [24] first learns the facial part-based response
through attribute recognition CNNs, which is further used
to supervise the learning of action unit (AU) detection.
Finally, it employs AUs as a mid-level representation to
estimate the intensity of valence and arousal. DRC-Net [25]
is based on Inception-ResNet modules redesigned specifi-
cally for the task of facial affect estimation. It consists of a
shallow Inception-ResNet, a deep Inception-ResNet and an
inceptionResNet with LSTMs. These networks extract facial
features at different scales and simultaneously estimate both
valence and arousal in each frame.

Since annotations of the test data are not public, our
results in Table 2 were evaluated by the official organizer. A
total of 9 evaluations were obtained from the organizers. As
demonstrated in Table 2, our method achieves competitive
accuracy to these state-of-the-art methods on the test data.

Simplicity is central to our design; the strategies adopted
in PersEmoN are complementary to those more complicated
approaches, such as ensemble of memory networks used
in MM-Net, multiple datasets used for cascade learning
employed in FATAUVA-Net and multi-scale inputs adopted
in DRC-Net. Furthermore, all these other methods are much
more difficult to train than ours. Multiple LSTM layers
are used in MM-Net and DRC-Net, while FATAUVA-Net
cannot perform end-to-end but cascade training. Although
PersEmoN was not optimized for emotion recognition like
the other methods, it still yields competitive results for the
emotion task.

4.4 Evaluation of Apparent Personality
Recognition of Big Five personality traits appears more
interesting to us because apparent personality is a higher-

level attribute compared to emotion. Table 3 compares some
of the latest apparent personality recognition methods. In
contrast to other approaches, ours can be trained end-to-
end using only one pre-trained model. Moreover, unlike
most methods which fuse both acoustic and visual cues,
PersEmoN uses only video as input.

TABLE 3
Comparison of the deep personality network properties of PersEmoN
vs. the top teams in the 2016 ChaLearn First Impressions Challenge.

Fusion Modality End-to-EndAudio Video
PersEmoN late 7 3 3

NJU-LAMDA [29]1 late 3 3 3
evolgen [28] early 3 3 3

DCC [26] late 3 3 3
ucas [8] late 3 3 7

BU-NKU-v1 [30] early 7 3 7
BU-NKU-v2 [41]2 early 3 3 7

1 winner, 1st ChaLearn First Impressions Challenge (ECCV 2016).
2 winner, 2nd ChaLearn First Impressions Challenge (ICPR 2016)

The quantitative comparison between PersEmoN and
state-of-the-art works on apparent personality recognition
is shown in Table 4. The teams from NJU-LAMDA to BU-
NKU-v1 are the top five participants in the 1st ChaLearn
Challenge on First Impressions [8]. Note that BU-NKU was
the only team not using audio in the challenge, and their
predictions were rather poor comparatively. After adding
the acoustic cues, the same team won the 2nd ChaLearn
Challenge on First Impressions [42]. Importantly, PersEmoN
only considers visual streams. Yet as is evident in Table 4,
even when only taking into account PAM, PersEmoN already
achieves superior performance over others, not only on the
average A and R2 scores, but both scores for all traits.

Since RAM can also predict the apparent personality
attributes from the output of EAM, as shown in Fig. 1, it
can provide our personality network with complementary
information. To demonstrate this, we fuse the predicted
attributes of both RAM and PAM; we use late fusion by
a weighted average which assigns a weight of 6 to the
personality network and 1 to the RAM (weights are obtained
by performing a grid search on a separate validation set).
The results are presented in Table 4 as “PAM+RAM”. In this
case, we observe another performance boost and the highest
overall accuracy.

4.5 Emotion-to-Apparent-Personality Relationship
Here we show the possibility of determining apparent per-
sonality traits from 2-dimensional affective components. As
can be noticed in Table 4 under “Ours (RAM)”, we achieve
satisfactory apparent personality predictions with only 2-
dimensional arousal-valence inputs.

An illustration of the emotion-to-apparent-personality
relationship is shown in Fig. 3, where each “disk” rep-
resents a certain apparent personality trait with respect
to the corresponding values of arousal and valence. The
discoveries are consistent with [43]: Agreeableness and Con-
scientiousness are fairly near each other (the two traits share
similar emotions), while Neuroticism is located far away
from Openness. The “disk” for Extraversion (not shown in
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TABLE 4
Apparent personality prediction benchmarking using mean accuracy A and coefficient of determination R2. Note that there are no R2 scores

reported for BU-NKU-v2.

Average Extraversion Agreeableness Conscientiousness Neuroticism Openness
A R2 A R2 A R2 A R2 A R2 A R2

PAM+RAM 0.917 0.485 0.920 0.552 0.914 0.349 0.921 0.570 0.914 0.500 0.915 0.457
Ours (PAM) 0.916 0.478 0.920 0.544 0.913 0.338 0.921 0.571 0.913 0.489 0.914 0.448
Ours (RAM) 0.903 0.373 0.911 0.449 0.908 0.264 0.902 0.349 0.908 0.442 0.907 0.364

NJU-LAMDA [29] 0.913 0.455 0.913 0.481 0.913 0.338 0.917 0.544 0.910 0.475 0.912 0.437
evolgen [28] 0.912 0.440 0.915 0.515 0.912 0.329 0.912 0.488 0.910 0.455 0.912 0.414

DCC [26] 0.911 0.411 0.911 0.431 0.910 0.296 0.914 0.478 0.909 0.448 0.911 0.402
ucas [8] 0.910 0.439 0.913 0.489 0.909 0.292 0.911 0.520 0.906 0.457 0.910 0.439

BU-NKU-v1 [30] 0.909 0.394 0.916 0.514 0.907 0.234 0.913 0.487 0.902 0.363 0.908 0.372
BU-NKU-v2 [41] 0.913 - 0.918 - 0.907 - 0.915 - 0.911 - 0.914 -

the Figure) is close to Agreeableness. This demonstrates that
our RAM network indeed has the ability of learning the
emotion-to-apparent-personality relationship. Based on this,
we believe that PersEmoN can serve as a strong practical
baseline for automatically annotating apparent personality
based on arousal and valence.

4.6 Ablation Study

4.6.1 Effectiveness of Joint Training
Our novel multi-task learning approach aims to learn a gen-
eralizable representation, which is applicable not only to the
task in question, but also to other tasks with significant com-
monalities. In PersEmoN, since a shared FEM is employed
by all tasks, additional tasks act as regularization, which
requires the system to perform well on a related task. The
backpropagation training from different tasks will directly
impact the representation learning of shared parameters. It
prevents overfitting by solving all tasks jointly and allowing
for the exploitation of additional training data.

Table 5 illustrates the effectiveness of this strategy. As the
annotations for the test set of Aff-Wild are not released, we
divide the original training set into training and validation
set with a ratio of 10 : 1 and evaluate all models on the
validation set for the emotion task using MSE. We use the
symbols 3 and 7 to represent cases where the corresponding
functionality is enabled or disabled, respectively. The 2nd

and 3rd row in Table 5 shows the case where we train EAM
and PAM on top of FEM individually. The 4th row shows the
results of both tasks when we disable RAM. The last row
is our final results when all modules are activated. When
we compare the 3rd with the 1st row, we observe an im-
provement in emotion MSE, which indicates the superiority
of jointly training emotion with apparent personality. Simi-
larly, an improvement in apparent personality MSE (3rd vs.
2nd row) verifies that such a strategy is reciprocal. Finally,
incorporating the joint training of RAM improves the results
in both tasks. We believe these improvements originate
from the back-propagation training of CNN, during which
the shared parameters within the FEM directly impact the
generalization ability of the whole system.

4.6.2 Consensus Function G
Average temporal pooling has been reported to work well
in modeling long-term temporal dependencies for deeply
learned representations by [37]. This is also in line with

TABLE 5
Effectiveness of jointly training PersEmoN.

Modules in Training MSE in Prediction
Apparent Apparent

Emotion Personality Relationship Emotion Personality
3 7 7 0.096 -
7 3 7 - 0.057
3 3 7 0.080 0.033
3 3 3 0.071 0.027

our empirical results on apparent personality recognition.
To demonstrate this, we compare average pooling with two
other alternatives. One is max pooling, which helps to select
the most salient information in its receptive field and has
been heavily encoded in popular network structure such as
ResNet, VGG and so on. The other is recurrent aggregation,
for which we choose the popular LSTM [44]. LSTM has
been shown to work better than conventional recurrent
networks due to its learnable memory gate to avoid gradient
vanishing or explosion.

In our implementation, both feature representations
from FEM as well as LSTM are jointly optimized. More
specifically, we train LSTM to aggregate all the feature
maps from FEM with 10 input frames from the apparent
personality dataset. The hidden neurons of LSTM are set
to 128. After that, we use average pooling to integrate all
temporal information, as done in [45]. Finally, a FC layer
is employed to directly regress the apparent personality
scores. We achieve an average accuracy of 91.4%, 90.6%
and 90.1% for average pooling, max pooling and LSTM,
respectively. Max pooling performs worse than average
pooling and better than LSTM. This indicates that selecting
the most salient information from a video frame does not
necessarily capture its overall statistics better. The reason for
the weakness of LSTM could be that apparent personality is
an orderless concept where temporal dependencies may not
be so relevant.

4.6.3 Number of Segments K
In our implementation, K = 10. We empirically find that
the apparent personality results are not sensitive when K is
within [5, 20]. However, when both emotion and personality
network are jointly optimized, we observe that a balanced
input is always beneficial in both tasks. We use a batch size
of 100 for both emotion and apparent personality datasets.
In this way, 10 input videos for apparent personality are
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Fig. 3. Illustration of the relationship between various apparent personality traits and the arousal-valence emotion space, acquired from the input
and output of RAM. Best viewed in color.

Emotion

Personality

Emotion

Personality

(a) Without coherence (b) With coherence

Fig. 4. Visualization of the distribution of learned features in PersEmoN for both emotion and apparent personality datasets with and without
coherence strategy. Using the coherence strategy, a large number of features from the emotion dataset are pulled inside the ring, making the two
distributions more similar and increasing the overlap between the distributions significantly. Zoom in for more details. Best viewed in color.

used in each batch. Setting K to a larger value, for example
100, will lead to a lower number of either input videos
for apparent personality or emotion frames. This further
reduces the final performance in both tasks.

4.6.4 Coherence Strategy

As reported by [39], a representation with good transferabil-
ity should be dataset invariant. To verify this, we also report
the MSE scores of two tasks when we remove the coherence
strategy from PersEmoN in Table 6. We observe that this
strategy leads to about 15% improvement in terms of MSE
for emotion (Aff-Wild) and apparent personality (Chalearn).

We visualize the distribution of the deeply learned
features from FEM (the fc5 layer of SphereFace) in Fig. 4.
More specifically, we project the 512-dimensional features
on both emotion and apparent personality datasets into 2
dimensional space and visualize their distributions using t-
SNE [46]. t-SNE visualizes high-dimensional data by giving
each data point a location in a two- or three-dimensional
map. The visualizations produced by t-SNE are often sig-
nificantly better than other advanced techniques. Without a

coherence strategy, distributions of those deep features on
different datasets can be well classified, i.e. features from
emotion dataset are mainly distributed in the outer ring of
the x/y plane. Using the coherence strategy, a large number
of features from the emotion dataset are pulled inside the
ring, making the two distributions more similar and their
overlap significantly larger.

TABLE 6
Effectiveness of coherence strategy in PersEmoN in terms of MSE.

MSE With Coherence Without Coherence
Emotion 0.071 0.082

Apparent Personality 0.027 0.032

5 CONCLUSIONS

For the first time, we investigate the feasibility of jointly ana-
lyzing apparent personality, emotion, and their relationship
within a single deep neural network. This is challenging due
to the scarceness of datasets which encompass both emotion
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and apparent personality annotations. To tackle this issue
we propose PersEmoN, an end-to-end trainable deep net-
work with two CNN branches called emotion and apparent
personality network. With shared bottom feature extraction
layers, these two networks regularize each other within a
multi-task learning framework, where each one is dedi-
cated to their own annotated dataset. We further employ
an adversarial-like loss function to promote representation
coherence between heterogeneous dataset sources, which
leads to further performance boosts. We demonstrate the
effectiveness of PersEmoN on two apparent personality and
emotion datasets. We find that the proposed joint training of
both emotion and apparent personality networks can lead to
a more generalizable representation for both tasks.
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