Towards Practical Applications of NeRF

Songyou Peng

Adobe Research Sep 06, 2022

Who Am I?

- PhD Student
 - Marc Pollefeys
 - Andreas Geiger

- Internships during PhD
 - 2021: Michael Zollhoefer
 - Now: Tom Funkhouser

Meta Google Research

• Graduate next summer

pengsongyou.github.io

My PhD Topics: Neural Scene Representations for <u>3D reconstruction</u>, <u>novel view synthesis</u>, and <u>SLAM</u>

Convolutional Occupancy Networks ECCV 2020 (Spotlight)

Shape As Points NeurIPS 2021 (Oral)

KiloNeRF

NICE-SLAM

CVPR 2022

Ours

UNISURF ICCV 2021 (Oral)

NeRF is awesome!

Some problems still exist...

- 😢 Slow rendering speed
- Poor underlying geometry
- 😢 Camera poses needed

KiloNeRF
 UNISURF + MonoSDF
 NICE-SLAM

KiloNeRF Speeding up NeRF with Thousands of Tiny MLPs

- Partition a scene into a 16³ uniform grid
- Each grid cell is represented by a tiny MLP

KiloNeRF: ~12 kFLOPs

87x reduction in FLOPs!

KiloNeRF

Training:

- 1. Distill a trained NeRF model into our KiloNeRF model
 - Randomly sampled points, their predicted alpha & color values should match!
- 2. Finetune the thousand MLPs on training images

KiloNeRF

Training:

- 1. Distill a trained NeRF model into our KiloNeRF model
 - Randomly sampled points, their predicted alpha & color values should match!
- 2. Finetune the thousand MLPs on training images

Inference:

- 1. Empty Space Skipping (ESS) with a pre-computed 256³ occupancy grid
- **2. Early Ray Termination (ERT)**: when transmittance < ε, stop!
- 3. Evaluate tiny MLPs in parallel

Method	Render time \downarrow	Speedup \uparrow
NeRF	56185 ms	_
NeRF + ESS + ERT	788 ms	71
KiloNeRF	22 ms	2554

* Tested with NVIDIA GTX 1080 Ti

Results

https://github.com/creiser/kilonerf

Comparison to Concurrent Works

Туре	Neural	Tabulation-based		
Method	KiloNeRF	PlenOctree	SNeRG	FastNeRF
GPU Memory	< 100 MB	1930 MB	3442 MB	7830 MB

\Rightarrow KiloNeRF has a larger potential for large-scale NVS!

BlockNeRF applied our idea for city-level NVS ©

Take-home Message

- Speed up NeRF significantly (~2000x) without loss of quality
- A memory more friendly representation!

Limitations

- Only work on bounded scenes
- Expensive training time

UNISURF

Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

Motivation

The underlying geometry of NeRF (volume rendering) is poor

NeRF Rendering

NeRF Geometry

Motivation

Surface rendering methods produce great geometry, but require object masks

NeRF Rendering

NeRF Geometry

IDR [1] Geometry

Can we obtain accurate geometry without masks?

NeRF

IDR

UNISURF

UNISURF

Unify radiance fields and implicit surface model ③

UNISURF

Early Stage: Volume rendering, but reformulate density to occupancy

NeRF rendering:
$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} \alpha_i(\mathbf{x}_i) \prod_{j < i} (1 - \alpha_j(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
 $\alpha_i(\mathbf{x}) = 1 - \exp(-\sigma(\mathbf{x}) \delta_i)$

Assuming a solid object, the alpha is the continuous occupancy field

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} o(\mathbf{x}_i) \prod_{j < i} (1 - o(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
1 for the first occupied sample
0 for all other samples

Points near to the surface have larger influence to the predicted color

UNISURF

Later Stage: Find surface points, decrease the range of volume rendering

Volume Rendering

Loss Functions

a) Image reconstruction loss

$$\mathcal{L}_{rec} = \sum_{\mathbf{r} \in \mathcal{R}} \left\| \hat{C}_v(\mathbf{r}) - C(\mathbf{r}) \right\|_1$$

b) Surface smoothness regularization

$$\mathcal{L}_{reg} = \sum_{\mathbf{x}_s \in \mathcal{S}} \|\mathbf{n}(\mathbf{x}_s) - \mathbf{n}(\mathbf{x}_s + \boldsymbol{\epsilon})\|_2$$

Results

DTU

BlendedMVS

Take-home Message

- Volume rendering and implicit surfaces can be unified!
- Accurate reconstruction without the need of masks
- Many cocurrent & follow-up works: NeuS, VolSDF, NeuralWarp, GeoNeuS...

Limitations

- Hard to reconstruct texture-less regions
- Still limited to small object-centric scenes
- Won't work given only sparse views

MonoSDF

Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction

Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, Andreas Geiger arXiv 2022

VolSDF / NeuS / UNISURF

Only supervision: multi-view RGB images

MonoSDF

$$\begin{split} \mathcal{L}_{\text{normal}} &= \sum_{\mathbf{r} \in \mathcal{R}} \left\| \hat{N}(\mathbf{r}) - \bar{N}(\mathbf{r}) \right\|_{1} + \left\| 1 - \hat{N}(\mathbf{r})^{\top} \bar{N}(\mathbf{r}) \right\|_{1} \\ \mathcal{L}_{\text{depth}} &= \sum_{\mathbf{r} \in \mathcal{R}} \left\| (w \hat{D}(\mathbf{r}) + q) - \bar{D}(\mathbf{r}) \right\|^{2} \end{split}$$

Monocular Geometric Cues

Results

Large-scale Indoor Scenes

GT MACHAEREN [ENSIDER] 226'17]

Our Tanks & Temple Result

Results

DTU with 3 Input Views

TSDF CFOILSNO ACTIVES CORVERSED Population

Take-home Message

- Easy-to-obtain monocular cues are important!
- Also help converge faster and better!

Limitations

• Depends on the quality of the monocular cues

What is missing?

Neural Implicit Scalable Encoding for SLAM

CVPR 2022

Zihan Zhu* Songyou Peng* Viktor Larsson Weiwei Xu Hujun Bao Zhaopeng Cui Martin R. Oswald Marc Pollefeys

* Equal Contributions

RGB-D Sequences

40x Speed

iMAP [Sucar et al., ICCV'21]

First neural implicit-based online SLAM system

iMAP [Sucar et al., ICCV'21]

- Fail when scaling up to larger scenes
- Global update → Catastrophic forgetting
- Slow convergence

NICE-SLAM

Applicable to large-scale scenes
 Local update → No forgetting problem
 Fast convergence

Pipeline

Input RGB

Results

NICE-SLAM

4x Speed

NICE-SLAM

10x Speed

Take-home Message

- A NICE online implicit SLAM system for indoor scenes
- Hierarchical feature grids + a tiny MLP seems to be a trend!
 - Instant-NGP [TOG]

Limitations

- Requires depths as input
- Only bounded scenes
- Still not real-time

Final Remarks

- NeRF has been sped up significantly for both rendering and optimization
- NeRF-based multi-view surface reconstruction still has rooms to improve
- A completely COLMAP-free NeRF pipeline?
- What is THE representation?

Thanks!

