Songyou Peng

The University of Hong Kong Feb 22, 2024

Who Am I?

- Senior Researcher
 ETH zürich
- Incoming Research Scientist

Google Research

- Earned my PhD
 - Marc Pollefeys
 - Andreas Geiger

∧ Meta

- Internships during PhD
 - 2021: Michael Zollhoefer
 - 2022: Tom Funkhouser Google Research

pengsongyou.github.io

NICE-SLAM CVPR 2022 NICER-SLAM 3DV 2024 (Oral)

UNISURF ICCV 2021 (Oral) **OpenScene** CVPR 2023 ₂

ConvOccNet ECCV 2020 (Spotlight)

MonoSDF NeurIPS 2022

Topic #1: Reconstruct Complex Scenes

NICE-SLAM CVPR 2022 NICER-SLAM 3DV 2024 (Oral) UNISURF

OpenScene CVPR 2023 ₃

Topic #2: Fast Inference

ConvOccNet ECCV 2020 (Spotlight MonoSDF NeurIPS 2022

Shape As Points NeurIPS 2021 (Oral)

KiloNeRF

OpenScene CVPR 2023 4

NICER-SLAM 3DV 2024 (Oral) UNISURF ICCV 2021 (Oral)

Topic #3: **Reconstruct from 2D Observations**

UNISURF ICCV 2021 (Oral)

NICE-SLAM **CVPR 2022**

NICER-SLAM 3DV 2024 (Oral)

NICE-SLAM CVPR 2022 **NICER-SLAM** 3DV 2024 (Oral) **UNISURF** ICCV 2021 (Oral) OpenScene CVPR 2023 6

ConvOccNet ECCV 2020 (Spotlight)

MonoSDF NeurIPS 2022

Shape As Points NeurIPS 2021 (Oral)

UNISURF ICCV 2021 (Oral)

KiloNeRF ICCV 2021

OpenScene CVPR 2023 7

NICER-SLAM

3DV 2024 (Oral)

NICE-SLAM CVPR 2022

MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction

Zehao Yu

Songyou Peng

Michael Niemeyer

Torsten Sattler

Andreas Geiger

AX PLANCK INSTITUTE

CTU CZECH TECHNIC UNIVERSITY IN PRAGUE

MonoSDF: Exploring **Monocular Geometric Cues** for Neural Implicit Surface Reconstruction

Zehao Yu

Songyou Peng

Michael Niemeyer

Torsten Sattler

Andreas Geiger

X PLANCK INSTITUTE FOR INTELLIGENT SYSTEMS

CZECH TECHNICA UNIVERSITY IN PRAGUE

CTU

Depth Prediction from a Single Image

Eigen, Puhrsch and Fergus: Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. NIPS, 2014

Omnidata

RGB Image

Omnidata Normal

Omnidata Depth

Eftekhar, Sax, Malik and Zamir: Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans. ICCV, 2021.

Songyou Peng

The University of Hong Kong Feb 22, 2024

2D Monocular Cues Benefit 3D Reconstruction

3D Reconstruction Pipeline VolSDF/NeuS/UNISURF/Neuralangelo

3D Reconstruction Pipeline MonoSDF

3D Reconstruction Pipeline MonoSDF

3D Reconstruction Pipeline MonoSDF

Monocular Geometric Cues

2D Magic in a 3D World 2D Monocular Cues Benefit 3D Reconstruction

Results

Baseline Comparison

Large-Scale 3D Scene Reconstruction Tanks & Temples Dataset

2D Magic in a 3D World 2D Monocular Cues Benefit 3D Reconstruction

Omnidata ~14M Training Images

What happened since 2021?

Radford et al.: Learning Transferable Visual Models From Natural Language Supervision. ICML, 2021.

Text-to-Image Generation

DALL·E 3

You

Generate an image of "a nervous person presenting in front of many smart researchers at a lecture hall in the University of Hong Kong, with the university logo"

Imagen

Google Research

Stable Diffusion stability.ai

Betker et al.: <u>Improving Image Generation with Better Captions</u>. 2023 Saharia et al.: <u>Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding</u>. NeurIPS 2022 Rombach et al.: <u>High-Resolution Image Synthesis with Latent Diffusion Models</u>. CVPR 2022

2D Image Segmentation

SAM Meta

~1B Mask + Human-in-the-loop

Kirillov et al.: Segment Anything. ICCV, 2023
2D Visual Features

DINO v2

1.2B Training Images

Text-to-Video Generation

Sora

??? B Training Videos?

Prompt: A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors.

2D Magic in a 3D World

Songyou Peng

The University of Hong Kong Feb 22, 2024

2D Magic in a 3D World

2D Foundation Models for 3D Vision Tasks

[Generated by DALL·E 3]

NeRF Is Awesome

Motivation

How to obtain **distractor-free NeRFs** from **casually captured sequences**?

Uncertainty

Input RGB

Uncertainty Map

How to learn a good uncertainty map?

DINO v2

- A 2D foundation model producing **universal features**
- Preserve temporal-spatial consistency

How to Leverage the **2D Foundation Model** for **Distractor-free NeRF?**

NeRF On-the-go Exploiting Uncertainty for Distractor-free NeRFs in the Wild

Weining Ren*

Zihan Zhu*

Boyang Sun

Julia Chen

Marc Pollefeys

Songyou Peng

Pipeline

To Learn the Uncertainty MLP...

Rendered RGB

Train RGB

Why SSIM? Leverage structure information when RGB is similar!

Luminance

Structure

Pipeline

Sampling Strategy

Random (NeRF) Patch (RobustNeRF) Dilated Patch (Ours)

Larger Perceptive Field: Improve efficiency, reconstruction quality
More Local Information: Better distractor removal

Pipeline

Pipeline

Results

On-the-go Dataset

Low Occlusion $(5\% \sim 10\%)$

High Occlusion (~30%)

Statue - Rendering Comparisons

Train Station - Input Images

Train Station - Rendering Comparisons

Occlusion Ratio: **High**

Patio-High - Rendering Comparisons

Analysis

Analysis - Efficiency

Sabour et al.: RobustNeRF: Ignoring Distractors with Robust Losses. CVPR, 2023 (Highlight)

Analysis - Efficiency

25K

50K 100K NeRF On-the-go (Ours) 250K

Analysis – Static Scene

RobustNeRF

Ours

MipNeRF 360

GT

Analysis – Handle Large Occlusions

Arc de Triomphe

Patio-High

Take-home Messages

- On-the-go module is plug-and-play for all NeRF methods
 - Integrated into NeRFStudio

Take-home Messages

- On-the-go module is plug-and-play for all NeRF methods
 - Integrated into NeRFStudio
- 2D foundation model (DINOv2) rocks!

How to improve upon it?
NeRF On-the-go for VERY Large Urban Scenes

Zinuo You, Andreas Geiger, Anpei Chen: <u>NeLF-Pro: Neural Light Field Probes</u>. arXiv, 2023

NeRF On-the-go Without COLMAP

2D Magic in a 3D World 2D Foundation Models for 3D Vision Tasks

2D Magic in a 3D World 2D Foundation Models for 3D Vision Tasks

Input 3D Geometry

Input 3D Geometry

wall	floor	cabinet	bed	📕 chair	sofa	table	door	
window	count	er 📒 curta	ain 📕	toilet 🔳	sink 📃	bathtub	other	unlabeled

Traditional 3D Scene Understanding (e.g. Semantic Segmentation)

Only train and test on a few common classes

3D Scene Understanding Tasks w/o Labels

Affordance prediction

3D Scene Understanding Tasks w/o Labels

Example: "where can I sit?"

• Affordance prediction

Input 3D Geometry

3D Scene Understanding Tasks w/o Labels

- Affordance prediction
- Material identification
- Physical property estimation
- Rare object retrieval
- Activity site prediction
- Fine-grained semantic segmentation
- Many more...

How to have a single model for all these 3D tasks without any labeled 3D data?

Leverage 2D foundation models

Key Idea

Co-embed 3D Features with CLIP Features

Key Idea Co-embed 3D Features with CLIP Features

How to Learn Such Text-Image-3D Co-Embeddings?

Step 1: Multi-view Feature Fusion

Ghiasi, Gu, Cui, Lin: <u>Scaling Open-Vocabulary Image Segmentation with Image-Level Labels</u>. ECCV 2022
Li, Weinberger, Belongie, Koltun, Ranftl: <u>Language-driven Semantic Segmentation</u>. ICLR 2022

Step 2: 3D Feature Distillation

Inference: 2D-3D Ensemble

Open-Vocabulary, Zero-shot

3D Semantic Segmentation

📄 wall 📱 floor 📕 cabinet 📕 bed 📕 chair 📕 sofa 📕 table 📕 door 📄 window 📕 bookshelf 📕 picture 📕 counter 📄 desk 📒 curtain 📕 refrigerator 📄 shower curtain 📕 toilet 📕 sink 📕 bathtub 📕 other

wall

90

other

Our Zero-shot 3D Segmentation (160 classes)

wall	cabinet	📕 bed	📕 pot	bathtub	dresser	stand	clock	tissue box	furniture	🔳 soap	📕 cup	hanger	📒 urn	paper towel dispenser	toy
door	curtain	night stand	desk	book	📕 rug	drawer	stove	tv stand	air conditioner	thermostat	ladder	candlestick	ala constitue plate	lamp shade	foot rest
ceiling	📕 table	toilet	box 📃	📕 air vent	ottoman	container	washing machine	shoe	📕 fire extinguisher	radiator	garage door	📕 light	pool table	car	📕 soap dish
floor	plant	column	coffee table	faucet	bottle	light switch	📒 shower curtain	heater	curtain rod	📕 kitchen island	📕 piano	scale	јаскет	toilet brush	cleaner
picture	mirror	banister	counter	photo	refridgerator	purse	📕 bin	headboard	printer	paper towel	board	bag	bottle of soap	drum	computer
window	towel	stairs	bench	📕 toilet paper	bookshelf	📕 door way	chest	bucket	telephone	sheet	rope	📕 display case	water cooler	whiteboard	knob 1
📕 chair	sink	stool	📕 garbage bin	📕 fan	wardrobe	basket	microwave	candle	blanket	glass	ball	toilet paper holder	📕 tea pot	📕 range hood	📕 paper
pillow	shelves	vase	fireplace	railing	pipe	chandelier	blinds	📕 flower pot	handle	dishwasher	excercise equipment	📕 tray	stuffed animal	candelabra	projector

Image-based 3D Scene Query

mage Queries Control III Given 3D Geometry

Interactive Demo

Open-vocabulary 3D Scene Exploration

Take-home Messages

Open up a wide range of applications by leveraging large
2D vision-language models

Inspire future works to shift to open-vocabulary tasks

Segmentation quality is quite limited

PLA Ding*, Yang*, ..., Qi. CVPR 2023

(c) Close-set localization (d) Open-vocabulary localization

LERF Kerr*, Kim*, et al. ICCV 2023

OpenScene

Accurately segment and understand 3D scenes is essential!

Peng et al.: OpenScene: 3D Scene Understanding with Open Vocabularies. CVPR, 2023

Motivation

Instance Segmentation Methods Requires 3D Manual Labels

Input 3D Scene

3D Semantic Instances

Schult et al.: Mask3D: Mask Transformer for 3D Instance Segmentation. ICRA, 2023

Motivation 2D Foundation Model Rocks!

SAM exhibits extraordinary ability to generalize
Only applicable to 2D data

Kirillov et al.: <u>Segment Anything</u>. ICCV, 2023 (Best Paper Honorable Mention)

How to obtain accurate 3D segmentation without any manual 3D labels?

Leverage 2D foundation models

ETH zürich Google Microsoft

Segment3D

Learning Fine-Grained Class-Agnostic 3D Segmentation without Manual Labels

Rui Huang

Songyou Takmaz Peng

Ayça

Federico Tombari

Marc Pollefeys

Shiji Song

Huang

Francis Engelmann

Segment3D Stage 1: Pre-training on Partial Point Clouds

Segment3D Domain Gap Between Partial and Full Point Clouds

RGB Images

Partial Point Clouds

Full Point Clouds

Segment3D Stage 2: Fine-tune on Full Point Clouds

No manual labels are needed at all!

Results

Class-Agnostic 3D Segmentation ScanNet++ Validation Set

Input Point Clouds

Mask3D [1]
Class-Agnostic 3D Segmentation ScanNet++ Validation Set

Input Point Clouds

Segment3D (Ours)

Class-Agnostic 3D Segmentation ScanNet++ Validation Set

Segment3D (Ours)

GΤ

Class-Agnostic 3D Segmentation ScanNet++ Validation Set

		without post-processing		with post-processing		sing	
Model	Ground Truth Labels	AP	\mathbf{AP}_{50}	\mathbf{AP}_{25}	AP	\mathbf{AP}_{50}	\mathbf{AP}_{25}
SAM3D [49]	×	3.9	9.3	22.1	8.4	16.1	30.0
Felzenszwalb et al. [17]	×	5.8	11.6	27.2		_	_
Mask3D [40]	ScanNet200 [39]	8.7	15.5	27.2	14.3	21.3	29.9
Mask3D [40]	ScanNet [12]	9.4	16.8	28.7	15.4	22.7	31.6
Segment3D (Ours)	×	12.0	22.7	37.8	19.0	29.7	41.6
		(+27.7%)	(+35.1%)	(+31.7%)	(+23.4%)	(+30.8%)	(+31.6%)

Effect of Two-Stage Training

Training Stages	AP	\mathbf{AP}_{50}	\mathbf{AP}_{25}
Pre-Training (Stage 1)	7.4	15.2	31.2
+ Fine-Tuning (Stage 2)	12.0 (+62%)	22.7 (+49%)	37.8 (+21%)

Open-Vocabulary Segmentation

Mask3D Segment3D

"a black eraser"

"kettle handle"

"copier control screen"

Outdoor Scenes In-the-Wild

Mask3D

Take-home Messages

- No 3D manual labels are used for training at all!
- 2D foundation model (SAM) rocks!

Future work

- Unify as a single-stage pipeline
- Single pipeline for open-vocabulary 3D segmentation

2D Magic in a 3D World 2D Foundation Models for 3D Vision Tasks

This talk focuses on how to **leverage 2D foundation models** for 3D tasks

So, what is next?

Current Interests Next-Generation Monocular Predictor

Marigold: Stable Diffusion-Based Monocular Predictor

Ke, Obukhov, Huang, Metzger, Daudt, Schindler: Marigold: Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation. arXiv, 2023

Current Interests

Next-Generation Monocular Predictor

- Other **modalities** like surface normals, uncertainty, etc...
- Inference speed
- Video depth predictor (temporal-consistent)
- Metric depths

So far, we only talked about 2D foundation models...

Current Interests 3D Foundation Models

DreamFusion [ICLR'23] 1.5 Hours Large Reconstruction Models [ICLR'24] 5 Seconds!

So far, only object-level 3D foundation models

Current Interests

3D Foundation Models for Large-Scale Scenes

- What data? RealEstate (80K videos), Ego4D (3000-hour video)...
- What should be the representations? Efficient & compact
- What tasks? Generation, reconstruction, understanding?
- Many open questions: How to learn from pure 2D inputs? How to jointly train with limited 3D data?

Prompt: Reflections in the window of a train traveling through the Tokyo suburbs.

Prompt: Prompt: The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it's tires,.....

Do we really need text to 3D?

How to inject 3D to help Sora?

What Sora cannot do?

"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness"

2D Magic in a 3D World

