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Who Am I?

• Final-year PhD Student
• Marc Pollefeys
• Andreas Geiger

• Internships during PhD
• 2021: Michael Zollhoefer
• 2022: Tom Funkhouser

• Before PhD, worked in Singapore, and interned at 
INRIA and TUM

pengsongyou.github.io
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https://pengsongyou.github.io/
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Input Images 3D Reconstruction

Motivation
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3D Reconstruction

Motivation

3D Scene Understanding



My PhD Topics: Neural Scene Representations
for 3D reconstruction and 3D scene understanding

Convolutional Occupancy Nets
ECCV 2020 (Spotlight)

Shape As Points
NeurIPS 2021 (Oral)

NICE-SLAM
CVPR 2022

OpenScene
CVPR 2023

KiloNeRF
ICCV 2021

UNISURF
ICCV 2021 (Oral)

MonoSDF
NeurIPS 2022

NICER-SLAM
arXiv 2023 4



My PhD Topics: Neural Scene Representations
for 3D reconstruction and 3D scene understanding

Convolutional Occupancy Networks
ECCV 2020 (Spotlight)

NICE-SLAM
CVPR 2022

OpenScene
CVPR 2023
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Input Neural Network 3D 
Reconstruction

Learning-based 3D Surface Reconstruction
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What is a good 3D representation?
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● Traditional Explicit Representations ⇒ Discrete

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

3D Representations
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● Traditional Explicit Representations ⇒ Discrete
● Implicit Neural Representation ⇒ Continuous

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

3D Representations
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Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

Limitations
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Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

● Global latent code ⇒ overly smooth geometry

Limitations
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Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

● Fully-connected architecture ⇒ no translation equivariance

Limitations

● Global latent code ⇒ overly smooth geometry
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Implicit models work well for simple objects but poorly on complex scenes:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

ONet GT Mesh

Limitations
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How to reconstruct large-scale 3D scenes with
neural implicit representations?
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Convolutional Occupancy Networks

Songyou Peng Michael Niemeyer Lars Mescheder Marc Pollefeys Andreas Geiger



Main Idea
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● 2D Plane Encoder: Use a local PointNet to process input, project onto canonical plane

Main Idea
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● 2D Plane Encoder: Use a local PointNet to process input, project onto canonical plane
● 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation

Main Idea
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● 2D Plane Encoder: Use a local PointNet to process input, project onto canonical plane
● 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
● Occupancy Readout: Shallow occupancy network 

Main Idea
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● 2D Plane Encoder: Use a local PointNet to process input, project onto 3-canonical planes
● 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
● Occupancy Readout: Shallow occupancy network 

Main Idea
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● 3D Volume Encoder: Use a local PointNet to process input, volumetric feature encoding

Main Idea – 3D
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● 3D Volume Encoder: Use a local PointNet to process input, volumetric feature encoding
● 3D Volume Decoder: Processed by 3D U-Net, query features via trilinear interpolation
● Occupancy Readout: Shallow occupancy network 

Main Idea – 3D
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global feature

heavy FC network

no translation equivariance

local feature

shallow FC network

translation equivariance

Comparison

Occupancy Networks 

Convolutional Occupancy Networks
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Results
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Input ONet Ours - 2D Ours - 3D GT Mesh

Object-Level Reconstruction
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Training Speed
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Training Speed
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Input GT Mesh

● Trained and evaluated on synthetic rooms

Scene-Level Reconstruction: Synthetic
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Input ONet

● ONet fails on room-level reconstruction

Scene-Level Reconstruction: Synthetic
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Input SPSR
(Screened Poisson Surface Reconstruction)

● SPSR requires surface normals, output is noisy

Scene-Level Reconstruction: Synthetic
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Input Ours

● Our method preserves better details

Scene-Level Reconstruction: Synthetic
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● Fully convolutional model

● Trained on synthetic crops

● Sliding-window evaluation

● Scale to any scene size

Results on Matterport3D

Our reconstruction output

Large-Scale Reconstruction
Scene size: 15.7m x 12.3m x 4.5m
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● Fully convolutional model

● Trained on synthetic crops

● Sliding-window evaluation

● Scale to any scene size

Results on Matterport3D

Our reconstruction output

Scene size: 15.7m x 12.3m x 4.5m
Large-Scale Reconstruction
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● Introduce 3 different expressive hybrid representations for neural fields

● CNN’s translation equivariance enables to reconstruct large scenes

● The “tri-plane” representation became VERY popular

○ Especially in the NeRF era, see e.g. EG3D [CVPR’21], TensoRF [ECCV’22]

Limitations

● Not rotational equivariance

Take-home Messages
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NeRF is awesome!

Some existing problems…
😢 Poor underlying geometry
😢 Camera poses needed

Mildenhall*, Srinivasan*, Tancik* et al: NeRF : Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020 35



10x Speed40x Speed
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Neural Implicit Scalable Encoding for SLAM
NICE-SLAM

Zihan Zhu*     Songyou Peng*     Viktor Larsson     Weiwei Xu     Hujun Bao
Zhaopeng Cui     Martin R. Oswald     Marc Pollefeys

* Equal Contributions

CVPR 2022



iMAP
[Sucar et al., ICCV’21]

First neural implicit-based online SLAM system
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iMAP
[Sucar et al., ICCV’21]

Fail when scaling up to larger scenes
Global update → Catastrophic forgetting
Slow convergence

A single MLP

(Results from our iMAP re-implementation)

Predicted Poses

GT Poses
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NICE-SLAM

Local update → No forgetting problem
Fast convergence

Applicable to large-scale scenes

Feature grids + tiny MLPs

Predicted Poses

GT Poses
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Pipeline

Mapping

Tracking

41



Results

42



iMAP* NICE-SLAM
(our re-implementation of iMAP)

4x Speed

Predicted Poses

GT Poses 43



iMAP* NICE-SLAM
(our re-implementation of iMAP)

10x Speed
44



Note: Runtime evaluation setting from iMAP paper, not the best-performing setting45



Take-home Message

• A NICE NeRF-based SLAM system for indoor scenes

• Hierarchical feature grids + a tiny MLP seems to be a trend!

• Instant-NGP [SIGGRAPH’22 Best Paper] 

Limitations

• Requires depths as input

• Only bounded scenes

• Still not real-time
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47https://arxiv.org/abs/2302.03594

https://arxiv.org/abs/2302.03594
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49
Input 3D Geometry



Input 3D Geometry Traditional Semantic Segmentation
Only train and test on a few common classes
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Input 3D Geometry 3D Scene Understanding Tasks w/o Labels

• Affordance prediction

• Material identification

• Physical property estimation

• Rare object retrieval

• Activity site prediction

• Fine-grained semantic segmentation

• Many more…
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3D Scene Understanding with Open Vocabularies

Songyou Peng Andrea Tagliasacchi Marc Pollefeys Tom FunkhouserChiyu “Max” JiangKyle Genova

OpenScene

CVPR 2023



Key Idea: Co-embed 3D features with CLIP features

Radford et al.: Learning Transferable Visual Models From Natural Language Supervision. ICML 2021 

CLIP: Contrastive Language-Image Pre-Training



3D Geometry CLIP Text Features
(visualize with T-SNE)

RGB Images

Key Idea: Co-embed 3D features with CLIP features
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3D Geometry CLIP Text Features
(visualize with T-SNE)

RGB Images

Key Idea: Co-embed 3D features with CLIP features

sit
leather

comfy

glass
openable

Note: bold word embeddings are approximate 55



How to Learn Such Text-Image-3D Co-
Embeddings?
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Step 1: Multi-view Feature Fusion

ℰ!"

OpenSeg [1]
LSeg [2]

[1] Ghiasi, Gu, Cui, Lin: Scaling Open-Vocabulary Image Segmentation with Image-Level Labels. ECCV 2022
[2] Li, Weinberger, Belongie, Koltun, Ranftl: Language-driven Semantic Segmentation. ICLR 2022

RGB ImagesPer-pixel Features
(visualize with PCA)

𝐟!"
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3D Geometry



Step 2: 3D Distillation

3D Geometry

𝐟#"

𝐟!"

ℒ

ℒ = 1 − cos(𝐟!" − 𝐟#")
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Step 3: 2D-3D Ensemble

3D Geometry

𝐟#"

𝐟!"

𝐟!"#"

2D-3D Ensemble Features
(visualize with PCA)Choose the feature with

the highest max score among all prompts
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Open-Vocabulary, Zero-shot
3D Semantic Segmentation
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Input 3D Geometry
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Our Zero-shot 3D Segmentation
(20 classes)
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Our Zero-shot 3D Segmentation
(160 classes)
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Comparison

(ranked by number of instances in training set)

Most Common
Classes
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Comparison

(ranked by number of instances in training set)

Rarest
Classes
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Ablation
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Image-based 3D Scene Query
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Our SegmentationInput 3D Geometry

Image Queries

Our SegmentationInput 3D Geometry

Image Queries

Our SegmentationInput 3D Geometry

Image Queries

Our SegmentationInput 3D Geometry

Image Queries

Image Queries Given 3D GeometryOur SegmentationInput 3D Geometry

Image Queries
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Interactive Demo

Open-vocabulary 3D Scene Exploration
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Text queries:
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Take-home Message

• We enable a wide range of applications by open-vocabulary queries 

• This can hopefully influence how people train 3D scene understanding 
systems in the future

• Our real-time demo already shows the possibility to directly apply to AR/VR
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Learn to Reconstruct and Understand the 3D World

Convolutional Occupancy Networks
ECCV 2020 (Spotlight)

pengsongyou.github.io/conv_onet
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NICE-SLAM
CVPR 2022

pengsongyou.github.io/nice-slam 

OpenScene
CVPR 2023

pengsongyou.github.io/openscene

Thank you!

Songyou Peng


