Learning to Reconstruct and Understand the 3D World

Songyou Pengow at 50 fps on a GTX 1080 Ti

ETH Zurich and Max Planck Institute for Intelligent Systems

ETHzürich

Microsoft Mixed Reality & AI Lab – Zurich

May 31, 2023

Who Am I?

- Final-year PhD Student
 - Marc Pollefeys
 - Andreas Geiger

pengsongyou.github.io

- Internships during PhD
 2021: Michael Zollhoefer
 - 2022: Tom Funkhouser

Meta Google Research

 Before PhD, worked in Singapore, and interned at INRIA and TUM

Motivation

•

Input Images

3D Reconstruction

Motivation

3D Reconstruction

3D Scene Understanding

My PhD Topics: Neural Scene Representations for <u>3D reconstruction</u> and <u>3D scene understanding</u>

KiloNeRF Interactive Viewe

runs now at 50 fps on a GTX 1080 Ti

KiloNeRF ICCV 2021

Ours UNISURF ICCV 2021 (Oral)

Convolutional Occupancy Nets ECCV 2020 (Spotlight)

Shape As Points NeurIPS 2021 (Oral)

NICE-SLAM **CVPR 2022**

OpenScene **CVPR 2023**

NeurIPS 2022

My PhD Topics: Neural Scene Representations for <u>3D reconstruction</u> and <u>3D scene understanding</u>

floor

Convolutional Occupancy Networks ECCV 2020 (Spotlight)

NICE-SLAM CVPR 2022 OpenScene CVPR 2023

Learning-based 3D Surface Reconstruction

Input

Neural Network

What is a good **3D representation**?

3D Representations

• Traditional Explicit Representations ⇒ **Discrete**

3D Representations

- Traditional Explicit Representations ⇒ **Discrete**
- Implicit Neural Representation ⇒ Continuous

Structure of neural implicit representations:

Input \mathbf{x}

Structure of neural implicit representations:

Input \mathbf{x}

• Global latent code ⇒ overly smooth geometry

Structure of neural implicit representations:

Input \mathbf{x}

- Global latent code ⇒ **overly smooth geometry**
- Fully-connected architecture ⇒ **no translation equivariance**

Implicit models work well for **simple objects** but poorly on **complex scenes**:

How to reconstruct large-scale 3D scenes with **neural implicit representations**?

Convolutional Occupancy Networks

Songyou Peng

Michael Niemeyer

Lars Mescheder

Marc Pollefeys

Andreas Geiger

• **2D Plane Encoder**: Use a local PointNet to process input, project onto canonical plane

- **2D Plane Encoder**: Use a local PointNet to process input, project onto canonical plane
- **2D Plane Decoder**: Processed by U-Net, query features via bilinear interpolation

- 2D Plane Encoder: Use a local PointNet to process input, project onto canonical plane
- **2D Plane Decoder**: Processed by U-Net, query features via bilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

- **2D Plane Encoder**: Use a local PointNet to process input, project onto **3-canonical planes**
- **2D Plane Decoder**: Processed by U-Net, query features via bilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Main Idea – 3D

• **3D Volume Encoder**: Use a local PointNet to process input, volumetric feature encoding

Main Idea – 3D

- **3D Volume Encoder**: Use a local PointNet to process input, volumetric feature encoding
- **3D Volume Decoder**: Processed by 3D U-Net, query features via trilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Comparison

Results

Object-Level Reconstruction

Training Speed

Training Speed

• Trained and evaluated on synthetic rooms

Input

• ONet fails on room-level reconstruction

Input

• SPSR requires surface normals, output is noisy

Input

• Our method preserves better details

Input

Ours

Large-Scale Reconstruction

Scene size: 15.7m x 12.3m x 4.5m

Results on Matterport3D

- Fully convolutional model
- Trained on synthetic crops
- Sliding-window evaluation
- Scale to any scene size

Our reconstruction output

Large-Scale Reconstruction

Scene size: 15.7m x 12.3m x 4.5m

Results on Matterport3D

- Fully convolutional model
- Trained on synthetic crops
- Sliding-window evaluation
- Scale to any scene size

Our reconstruction output

Take-home Messages

- Introduce 3 different expressive hybrid representations for neural fields
- CNN's translation equivariance enables to reconstruct large scenes
- The "tri-plane" representation became VERY popular
 - Especially in the **NeRF era**, see e.g. EG3D [CVPR'21], TensoRF [ECCV'22]

Limitations

• Not rotational equivariance

NeRF is awesome!

Some existing problems...

- 😢 Poor underlying geometry
- 😢 Camera poses needed
RGB-D Sequences

40x Speed

Neural Implicit Scalable Encoding for SLAM

CVPR 2022

Zihan Zhu* Songyou Peng* Viktor Larsson Weiwei Xu Hujun Bao Zhaopeng Cui Martin R. Oswald Marc Pollefeys

* Equal Contributions

iMAP [Sucar et al., ICCV'21]

First neural implicit-based online SLAM system

iMAP [Sucar et al., ICCV'21]

- Fail when scaling up to larger scenes
- Global update → Catastrophic forgetting
- Slow convergence

NICE-SLAM

Applicable to large-scale scenes
Local update → No forgetting problem
Fast convergence

Pipeline

Input RGB

Results

NICE-SLAM

4x Speed

NICE-SLAM

10x Speed

Note: Runtime evaluation setting from iMAP paper, not the best-performing setting

Take-home Message

- A NICE NeRF-based SLAM system for indoor scenes
- Hierarchical feature grids + a tiny MLP seems to be a trend!
 - Instant-NGP [SIGGRAPH'22 Best Paper]

Limitations

- <u>Requires depths as input</u>
- Only bounded scenes
- Still not real-time

NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM

Input 3D Geometry

Input 3D Geometry

wall 📃	floor	📕 cabir	net 📒	bed	📕 cha	air	sof	а	table	door	
window	📕 cou	nter	curtain		toilet		sink	k	bathtub	other	unlabeled

Traditional Semantic Segmentation

Only train and test on a few common classes

Input 3D Geometry

- Affordance prediction
- Material identification
- Physical property estimation
- Rare object retrieval
- Activity site prediction
- Fine-grained semantic segmentation
- Many more...

3D Scene Understanding Tasks w/o Labels

3D Scene Understanding with Open Vocabularies

Songyou Peng

Kyle Genova

Chiyu "Max" Jiang

Andrea Tagliasacchi

Marc Pollefeys

Tom Funkhouser

SFU

Key Idea: Co-embed 3D features with CLIP features

Radford et al.: Learning Transferable Visual Models From Natural Language Supervision. ICML 2021

Key Idea: Co-embed 3D features with CLIP features

Key Idea: Co-embed 3D features with CLIP features

Note: bold word embeddings are approximate

How to Learn Such Text-Image-3D Co-Embeddings?

Step 1: Multi-view Feature Fusion

[1] Ghiasi, Gu, Cui, Lin: <u>Scaling Open-Vocabulary Image Segmentation with Image-Level Labels</u>. ECCV 2022
[2] Li, Weinberger, Belongie, Koltun, Ranftl: <u>Language-driven Semantic Segmentation</u>. ICLR 2022

Step 2: 3D Distillation

3D Geometry

Step 3: 2D-3D Ensemble

2D-3D Ensemble Features (visualize with PCA)

3D Geometry

Choose the feature with the highest max score among all prompts

Open-Vocabulary, Zero-shot 3D Semantic Segmentation

wall

62

other

Our Zero-shot 3D Segmentation (160 classes)

wall	cabinet	📕 bed	📕 pot	bathtub	dresser	stand	clock	tissue box	furniture	🔳 soap	📕 cup	hanger	📒 urn	paper towel dispenser	toy
door	curtain	night stand	desk	book	📕 rug	drawer	stove	tv stand	air conditioner	thermostat	ladder	candlestick	ala constitue plate	lamp shade	foot rest
ceiling	📕 table	toilet	box 📃	📕 air vent	ottoman	container	washing machine	shoe	📕 fire extinguisher	radiator	garage door	📕 light	pool table	car	📕 soap dish
floor	plant	column	coffee table	faucet	bottle	light switch	shower curtain	heater	curtain rod	📕 kitchen island	piano	scale	јаскет	📘 toilet brush	cleaner
picture	mirror	banister	counter	photo	refridgerator	purse	📕 bin	headboard	printer	paper towel	📕 board	bag	bottle of soap	drum	computer
window	towel	stairs	bench	📕 toilet paper	bookshelf	📕 door way	chest	bucket	telephone	sheet	rope	📕 display case	water cooler	whiteboard	knob 3
chair	sink	stool	garbage bin	📕 fan	wardrobe	basket	microwave	candle	blanket	glass	ball	toilet paper holder	📕 tea pot	📕 range hood	paper
pillow	shelves	vase	fireplace	railing	pipe	chandelier	blinds	📕 flower pot	handle	dishwasher	excercise equipment	📕 tray	stuffed animal	candelabra	projector

Comparison

Comparison

Ablation

Image-based 3D Scene Query

Interactive Demo

Open-vocabulary 3D Scene Exploration

Take-home Message

- We enable a wide range of applications by open-vocabulary queries
- This can hopefully influence how people train 3D scene understanding systems in the future
- Our real-time demo already shows the **possibility to directly apply to AR/VR**
Learn to Reconstruct and Understand the 3D World

Songyou Peng

Convolutional Occupancy Networks ECCV 2020 (Spotlight) pengsongyou.github.io/conv_onet NICE-SLAM CVPR 2022 pengsongyou.github.io/nice-slam OpenScene CVPR 2023 pengsongyou.github.io/openscene

Thank you!