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Me



Who Am I?

• Final-year PhD Student
• Marc Pollefeys
• Andreas Geiger

• Internships during PhD
• 2021: Michael Zollhoefer
• 2022: Tom Funkhouser

• Before PhD, worked in Singapore, and interned at 
INRIA and TUM

pengsongyou.github.io
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https://pengsongyou.github.io/


My PhD Topics: Neural Scene Representations
for 3D reconstruction and 3D scene understanding

Convolutional Occupancy Nets
ECCV 2020 (Spotlight)

Shape As Points
NeurIPS 2021 (Oral)

NICE-SLAM
CVPR 2022

OpenScene
CVPR 2023

KiloNeRF
ICCV 2021

UNISURF
ICCV 2021 (Oral)

MonoSDF
NeurIPS 2022

NICER-SLAM
arXiv 2023 3



In this talk…
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● Introduce explicit, implicit, and hybrid 3D scene representations

● Explore the evolution of neural explicit-implicit representations in 
the field of 3D reconstruction, neural rendering, visual SLAM…

● Discuss seminal works that have advanced the research in 
computer vision!
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Input
(Images/Point Clouds/…)

Neural Network 3D 
Reconstruction

Learning-based 3D Surface Reconstruction
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What is a good 3D shape representation?
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● Traditional Explicit Representations ⇒ Discrete

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

3D Representations
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● Traditional Explicit Representations ⇒ Discrete
● Neural Implicit Representation ⇒ Continuous

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

3D Representations
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SDF/Occupancy

3 seminal papers came out at the same CVPR!



11Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019



Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

Limitations
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Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

● Global latent code ⇒ overly smooth geometry

Limitations
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Structure of neural implicit representations:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

● Fully-connected architecture ⇒ no translation equivariance

Limitations

● Global latent code ⇒ overly smooth geometry
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Implicit models work well for simple objects but poorly on complex scenes:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

ONet GT Mesh

Limitations
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How to reconstruct large-scale 3D scenes with
neural implicit representations?
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Convolutional Occupancy Networks

Songyou Peng Michael Niemeyer Lars Mescheder Marc Pollefeys Andreas Geiger



Main Idea
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● 2D Plane Encoder: Use a local PointNet to process input, project onto canonical plane

Main Idea
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● 2D Plane Encoder: Use a local PointNet to process input, project onto canonical plane
● 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation

Main Idea
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● 2D Plane Encoder: Use a local PointNet to process input, project onto canonical plane
● 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
● Occupancy Readout: Shallow occupancy network 

Main Idea
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● 2D Plane Encoder: Use a local PointNet to process input, project onto 3-canonical planes
● 2D Plane Decoder: Processed by U-Net, query features via bilinear interpolation
● Occupancy Readout: Shallow occupancy network 

Main Idea
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● 3D Volume Encoder: Use a local PointNet to process input, volumetric feature encoding

Main Idea – 3D
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● 3D Volume Encoder: Use a local PointNet to process input, volumetric feature encoding
● 3D Volume Decoder: Processed by 3D U-Net, query features via trilinear interpolation
● Occupancy Readout: Shallow occupancy network 

Main Idea – 3D
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global feature

heavy FC network

no translation equivariance

local feature

shallow FC network

translation equivariance

Comparison

Occupancy Networks 

Convolutional Occupancy Networks
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Results

26



Input ONet Ours - 2D Ours - 3D GT Mesh

Object-Level Reconstruction
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Training Speed
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Training Speed
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Input GT Mesh

● Trained and evaluated on synthetic rooms

Scene-Level Reconstruction: Synthetic
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Input ONet

● ONet fails on room-level reconstruction

Scene-Level Reconstruction: Synthetic
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Input SPSR
(Screened Poisson Surface Reconstruction)

● SPSR requires surface normals, output is noisy

Scene-Level Reconstruction: Synthetic
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Input Ours

● Our method preserves better details

Scene-Level Reconstruction: Synthetic
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● Fully convolutional model

● Trained on synthetic crops

● Sliding-window evaluation

● Scale to any scene size

Results on Matterport3D

Our reconstruction output

Large-Scale Reconstruction
Scene size: 15.7m x 12.3m x 4.5m
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● Fully convolutional model

● Trained on synthetic crops

● Sliding-window evaluation

● Scale to any scene size

Results on Matterport3D

Our reconstruction output

Scene size: 15.7m x 12.3m x 4.5m
Large-Scale Reconstruction
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● Introduce 3 different expressive hybrid representations for neural fields

● CNN’s translation equivariance enables to reconstruct large scenes

● The “tri-plane” representation became VERY popular

○ Especially in the NeRF era, see e.g. EG3D [CVPR’21], TensoRF [ECCV’22]

Limitations

● Not rotational equivariance

Take-home Messages
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37Chibane et al.: Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion. CVPR 2020
Jiang et al.: Local Implicit Grid Representations for 3D Scenes. CVPR 2020

Concurrent Works IF-Net

Local implicit Grids
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Follow-up works: Neural Kernel Fields (NKF)

Williams et al.: Neural Fields as Learnable Kernels for 3D Reconstruction. CVPR 2022
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Follow-up works: Neural Kernel Fields (NKF)

Williams et al.: Neural Fields as Learnable Kernels for 3D Reconstruction. CVPR 2022



40

Follow-up works: NKSR

Huang et al.: Neural Kernel Surface Reconstruction. CVPR 2023
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Follow-up works: NKSR

Huang et al.: Neural Kernel Surface Reconstruction. CVPR 2023
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Follow-up works: EG3D

Chan et al.: Efficient Geometry-aware 3D Generative Adversarial Networks. CVPR 2021

The tri-plane representation enables high-quality 3D-aware view synthesis!
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Follow-up works: TensoRF

Chen et al.: TensoRF: Tensorial Radiance Fields. ECCV 2022

The tri-plane representation speeds up training a memory-efficient NeRF!



44Cao and Johnson: HexPlane: A Fast Representation for Dynamic Scenes. CVPR 2023

Follow-up works: HexPlane

Represent dynamic 3D scenes by decomposing a 4D 
spacetime grid into six feature planes ⇒ 100x faster training



45Cao and Johnson: HexPlane: A Fast Representation for Dynamic Scenes. CVPR 2023

Follow-up works: HexPlane



46Jiang et al.: Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations. RSS 2021
Shen et al.: ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object Manipulation. RSS 2022 (Best Student Paper Finalist)

Follow-up works: ACID

The tri-plane representation is also useful for accurate robot grasping!



● Grasping and Object Manipulation

47Jiang et al.: Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations. RSS 2021
Shen et al.: ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object Manipulation. RSS 2022 (Best Student Paper Finalist)

Follow-up works



Let’s take a step back to 
3D surface reconstruction…



What is a good 3D shape representation?



Traditional Explicit Representations
Fast inference
Discrete

3D Shape Representation

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019



Neural Implicit Representations 
Continuous, watertight
Slow inference
Difficult to initialize

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

3D Shape Representation



How can we benefit from both worlds?

3D Shape Representation



Shape As Points (SAP) - Hybrid Representation
Discrete ⇒ Continuous
Fast inference
Easy initialization

3D Shape Representation



Shape As Points
A Differentiable Poisson Solver

Songyou Peng Michael NiemeyerYiyi Liao Marc Pollefeys Andreas GeigerChiyu “Max” Jiang



Shape As Points
(SAP)

Duality between oriented point clouds and 3D dense geometry



Differentiable Poisson Solver

DPSR
in

out



Intuition of Poisson Equation

Shape Indicator Function Gradient Point Normals



● Discretization allows to invert the divergence operator

● Spectral methods to solve the Poisson equation
○ Derivatives of signals in spectral domain are computed analytically
○ Fast Fourier Transform (FFT) are highly optimized on GPUs/TPUs
○ Only 25-line codes

Our Poisson Solver
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How can we benefit from the differentiablity of DPSR?
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First Application
Optimization-based 3D Surface 

Reconstruction from unoriented point clouds



Input an initial oriented point cloud
(noisy / incomplete observations)

Pipeline - Forward Pass



Pipeline - Forward Pass



Pipeline - Forward Pass



Pipeline - Forward Pass



Pipeline - Forward Pass



?

?

Pipeline - Backward Pass



Pipeline



Pipeline





Comparison

Unoriented Point Clouds GT Mesh



Comparison

Unoriented Point Clouds Point2Mesh

Runtime: 62 mins

Hanocka, Metzer, Giryes, Cohen-Or: Point2Mesh: A Self-Prior for Deformable Meshes. SIGGRAPH, 2020



Comparison

Unoriented Point Clouds

Gropp, Yariv, Haim, Atzmon and Lipman: Implicit Geometric Regularization for Learning Shapes. ICML, 2020

IGR

Runtime: 30 mins



Comparison

Unoriented Point Clouds SAP

Runtime: ~6 mins



Comparison

SPSR

Runtime: ~9 sec 

Kazhdan and Hoppe: Screened Poisson Surface Reconstruction. SIGGRAPH, 2013

SAP

Runtime: ~6 mins



Can we further leverage the differentiability of the Poisson solver 
for deep neural networks?

SAP for Learning-based 3D Reconstruction



Learning-based Pipeline



Learning-based Pipeline



Learning-based Pipeline



Learning-based Pipeline



Learning-based Pipeline



Results



Inputs GT Mesh



Inputs GT Mesh R2N2 AtlasNet
15 ms 25 ms



Inputs GT Mesh ConvONet
327 ms



Inputs GT Mesh ConvONet
327 ms

Ours
64 ms



Benefit of Geometric Initialization

Chamfer distance over the training process

SAP converges much faster!



Conclusions

● SAP is a hybrid representation that is interpretable, topology 

agnostic, and enables fast inference

● Our Poisson solver is differentiable and GPU-accelerated

Limitation: Cubic memory requirements limits SAP for small scenes

https://pengsongyou.github.io/sap

https://pengsongyou.github.io/sa
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Neural Radiance Field
(NeRF)



NeRF is awesome!

Some existing problems…
😢 Very slow rendering speed

Mildenhall*, Srinivasan*, Tancik* et al: NeRF : Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020 90
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How to speed up NeRF rendering?
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Combine Explicit with Implicit Representations!
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KiloNeRF
Speeding up NeRF with Thousands of Tiny MLPs

Songyou Peng Andreas GeigerYiyi LiaoChristian Reiser



Key Idea

• Partition a scene into a 16! uniform grid

• Each grid cell is represented by a tiny MLP

* FLOP: floating points operations

87x reduction in FLOPs!

98



KiloNeRF

Training:
1. Distill a trained NeRF model into our KiloNeRF model

• Randomly sampled points, their predicted alpha & color values should match!

2. Finetune the thousand MLPs on training images

99



KiloNeRF

Training:
1. Distill a trained NeRF model into our KiloNeRF model

• Randomly sampled points, their predicted alpha & color values should match!

2. Finetune the thousand MLPs on training images

Inference:
1. Empty Space Skipping (ESS) with a pre-computed 256³ occupancy grid
2. Early Ray Termination (ERT): when transmittance < ε, stop!
3. Evaluate tiny MLPs in parallel
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* Tested with NVIDIA GTX 1080 Ti
101



Results
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56 s 0.02 s (50 fps)
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https://github.com/creiser/kilonerf
104

https://github.com/creiser/kilonerf


Comparison to Concurrent Works
Type Neural Tabulation-based
Method KiloNeRF PlenOctree SNeRG FastNeRF
GPU Memory < 100 MB 1930 MB 3442 MB 7830 MB

⇒ KiloNeRF has a larger potential for large-scale NVS!

Yu et al.: PlenOctrees For Real-time Rendering of Neural Radiance Fields. ICCV 2021
Hedman et al.: Baking Neural Radiance Fields for Real-Time View Synthesis. ICCV 2021
Garbin et al.: FastNeRF: High-Fidelity Neural Rendering at 200FPS. ICCV 2021



Follow-up Works of KiloNeRF

BlockNeRF applied our idea for city-level NVS J
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Tancik et al.: Block-NeRF: Scalable Large Scene Neural View Synthesis. CVPR 2022



Take-home Message

• Speed up NeRF significantly (~2000x) without loss of quality

• A memory more friendly representation!

Limitations

• Only work on bounded scenes

• Expensive training time
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Plenoxels
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• Directly optimize a view-dependent sparse voxel model

• Train a scene in 11 mins

Fridovich-Keil*, Yu* et al.: Plenoxels: Radiance Fields without Neural Networks. CVPR 2022



Direct Voxel Grid Optimization (DVGO)
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• Dense voxel grid for density (geometry), a feature grid with a shallow MLP 
for appearance

• Train a scene in 15 mins

Sun et al.: Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction. CVPR 2022



Instant-NGP
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• Multi-res Hash Encoding + shallow MLP + excellent engineering

• Train a scene in seconds!

Müller et al.: Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. SIGGRAPH 2022 Best Paper Award
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What is still missing for NeRF?

Always assume camera poses given!



10x Speed40x Speed
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Neural Implicit Scalable Encoding for SLAM
NICE-SLAM

Zihan Zhu*     Songyou Peng*     Viktor Larsson     Weiwei Xu     Hujun Bao
Zhaopeng Cui     Martin R. Oswald     Marc Pollefeys

* Equal Contributions

CVPR 2022



iMAP
[Sucar et al., ICCV’21]

First neural implicit-based online SLAM system
114



iMAP
[Sucar et al., ICCV’21]

Fail when scaling up to larger scenes
Global update → Catastrophic forgetting
Slow convergence

A single MLP

(Results from our iMAP re-implementation)

Predicted Poses

GT Poses

115



116

Again, can implicit-explicit representations help?



NICE-SLAM

Local update → No forgetting problem
Fast convergence

Applicable to large-scale scenes

Feature grids + tiny MLPs

Predicted Poses

GT Poses
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Pipeline

Mapping

Tracking
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Results
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iMAP* NICE-SLAM
(our re-implementation of iMAP)

4x Speed

Predicted Poses

GT Poses 120



iMAP* NICE-SLAM
(our re-implementation of iMAP)

10x Speed
121



Note: Runtime evaluation setting from iMAP paper, not the best-performing setting122



Take-home Message

• Neural explicit-implicit representation again helps!

• Hierarchical feature grids + a tiny MLP seems to be a trend!

Limitations

• Requires depths as input

• Still not real-time
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Follow-up Works: VoxFusion
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Yang et al.: Vox-Fusion: Dense Tracking and Mapping with Voxel-based Neural Implicit Representation. ISMAR 2022

• Gradually create voxel feature grids near to the surface

• Also more memory and time efficient



Follow-up Works: ESLAM

125
Mahdi Johari et al.: ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields. CVPR 2023

• My lovely tri-planes as the scene representation!

• Run 10x faster and 10x less memory



Follow-up Works: H2-Mapping

126
Yang et al.: H2-Mapping: Real-time Dense Mapping Using Hierarchical Hybrid Representation. Arxiv, June 2023

• Octree SDF representation + multi-res hash encoding

• Better engineering ⇒ real-time NeRF-based mapping



Related Works: Neuralangelo

127
Li et al.: Neuralangelo: High-Fidelity Neural Surface Reconstruction. CVPR 2023

• SDF representation + multi-res hash encoding

• Great engineering effort ⇒ High-fidelity large-scale outdoor reconstruction



Final Remarks

We introduced many neural explicit-implicit representations:
• Single/multi-res feature grids + MLP

• Tri-plane + MLP 

• Feature octrees + MLP

• Multi-res hash encoding + MLP

• Grid of MLPs

• Poisson solver to convert point clouds ⇒ indicator grids

…… (There are sooooooo many forms of neural explicit-implicit representations)
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Final Remarks

Neural explicit-implicit representations are AWESOME!!!
• Memory efficiency

• Fast training/testing speed

• Fast convergence

• Scalable, and robust to large scenes

…… Discover more yourself J

129

They truly shine through great engineering efforts!
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https://github.com/autonomousvision/sdfstudio

https://github.com/autonomousvision/sdfstudio


Overview of SDFStudio



Overview of SDFStudio



Overview of SDFStudio



Overview of SDFStudio



Overview of SDFStudio



We build on top of the amazing NeRFStudio!



Results on outdoor scenes: Neus-facto



Results on outdoor scenes: BakedSDF



Results on outdoor scenes: Bakedangelo



Results on outdoor scenes: Bakedangelo



Results on indoor scenes: Mono-NeuS



Results on indoor scenes: MonoSDF



Results on RGBD data



Results on object dataset
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Input 3D Geometry



Input 3D Geometry Traditional Semantic Segmentation
Only train and test on a few common classes

148



Input 3D Geometry 3D Scene Understanding Tasks w/o Labels

• Affordance prediction

• Material identification

• Physical property estimation

• Rare object retrieval

• Activity site prediction

• Fine-grained semantic segmentation

• Many more…
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3D Scene Understanding with Open Vocabularies

Songyou Peng Andrea Tagliasacchi Marc Pollefeys Tom FunkhouserChiyu “Max” JiangKyle Genova

OpenScene

CVPR 2023



Key Idea: Co-embed 3D features with CLIP features

Radford et al.: Learning Transferable Visual Models From Natural Language Supervision. ICML 2021 

CLIP: Contrastive Language-Image Pre-Training



3D Geometry CLIP Text Features
(visualize with T-SNE)

RGB Images

Key Idea: Co-embed 3D features with CLIP features
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3D Geometry CLIP Text Features
(visualize with T-SNE)

RGB Images

Key Idea: Co-embed 3D features with CLIP features

sit
leather

comfy

glass
openable

Note: bold word embeddings are approximate 153



How to Learn Such Text-Image-3D Co-
Embeddings?

154



Step 1: Multi-view Feature Fusion

ℰ!"

OpenSeg [1]
LSeg [2]

[1] Ghiasi, Gu, Cui, Lin: Scaling Open-Vocabulary Image Segmentation with Image-Level Labels. ECCV 2022
[2] Li, Weinberger, Belongie, Koltun, Ranftl: Language-driven Semantic Segmentation. ICLR 2022

RGB ImagesPer-pixel Features
(visualize with PCA)

𝐟!"
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3D Geometry



Step 2: 3D Distillation

3D Geometry

𝐟#"

𝐟!"

ℒ

ℒ = 1 − cos(𝐟!" − 𝐟#")
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Step 3: 2D-3D Ensemble

3D Geometry

𝐟#"

𝐟!"

𝐟!"#"

2D-3D Ensemble Features
(visualize with PCA)Choose the feature with

the highest max score among all prompts
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Open-Vocabulary, Zero-shot
3D Semantic Segmentation
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Input 3D Geometry
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Our Zero-shot 3D Segmentation
(20 classes)
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Our Zero-shot 3D Segmentation
(160 classes)
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Comparison

(ranked by number of instances in training set)

Most Common
Classes
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Comparison

(ranked by number of instances in training set)

Rarest
Classes
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Ablation
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Image-based 3D Scene Query

165



Our SegmentationInput 3D Geometry

Image Queries

Our SegmentationInput 3D Geometry

Image Queries

Our SegmentationInput 3D Geometry

Image Queries

Our SegmentationInput 3D Geometry

Image Queries

Image Queries Given 3D GeometryOur SegmentationInput 3D Geometry

Image Queries
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Interactive Demo

Open-vocabulary 3D Scene Exploration
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Text queries:
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Take-home Message

• We enable a wide range of applications by open-vocabulary queries 

• This can hopefully influence how people train 3D scene understanding 
systems in the future

• Our real-time demo already shows the possibility to directly apply to AR/VR
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