Dive into Neural Explicit-Implicit 3D Representations and Their Applications

Songyou Pengow at 50 fps on a GTX 1080 Ti

ETH Zurich and Max Planck Institute for Intelligent Systems

Symposium of Geometry Processing July 2, 2023

Who Am I?

- Final-year PhD Student
 - Marc Pollefeys
 - Andreas Geiger

- Internships during PhD
 - 2021: Michael Zollhoefer
 - 2022: Tom Funkhouser

Meta Google Research

pengsongyou.github.io

• Before PhD, worked in Singapore, and interned at INRIA and TUM

My PhD Topics: Neural Scene Representations for <u>3D reconstruction</u> and <u>3D scene understanding</u>

UNISURF ICCV 2021 (Oral)

OpenScene CVPR 2023

MonoSDF NeurIPS 2022

NICE-SLAM

CVPR 2022

3

In this talk...

- Introduce explicit, implicit, and hybrid 3D scene representations
- Explore the evolution of neural explicit-implicit representations in the field of 3D reconstruction, neural rendering, visual SLAM...
- Discuss seminal works that have advanced the research in computer vision!

Learning-based 3D Surface Reconstruction

Input (Images/Point Clouds/...) Neural Network

3D Reconstruction

What is a good **3D shape representation**?

3D Representations

• Traditional Explicit Representations ⇒ **Discrete**

3D Representations

- Traditional Explicit Representations ⇒ **Discrete**
- Neural Implicit Representation ⇒ **Continuous**

3 seminal papers came out at the same CVPR!

Occupancy Networks: Learning 3D Reconstruction in Function Space

Lars Mescheder¹ Michael Oechsle^{1,2} Michael Niemeyer¹ Sebastian Nowozin^{3†} Andreas Geiger¹ ¹Autonomous Vision Group, MPI for Intelligent Systems and University of Tübingen ²ETAS GmbH, Stuttgart ³Google AI Berlin

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park^{1,3†} Peter Florence ^{2,3†} Julian Straub³ Richard Newcombe³ Steven Lovegrove³ ¹University of Washington ²Massachusetts Institute of Technology ³Facebook Reality Labs Zhiqin Chen Simon Fraser University zhiqinc@sfu.ca

Learning Implicit Fields for Generative Shape Modeling

Hao Zhang Simon Fraser University haoz@sfu.ca

Input 3D-R2N2 PSGN Pix2Mesh AtlasNet Ours

Structure of neural implicit representations:

Input \mathbf{x}

Structure of neural implicit representations:

Input \mathbf{x}

• Global latent code ⇒ overly smooth geometry

Structure of neural implicit representations:

Input \mathbf{x}

- Global latent code ⇒ **overly smooth geometry**
- Fully-connected architecture ⇒ **no translation equivariance**

14

Implicit models work well for **simple objects** but poorly on **complex scenes**:

15

How to reconstruct large-scale 3D scenes with **neural implicit representations**?

Convolutional Occupancy Networks

Songyou Peng

Michael Niemeyer

Lars Mescheder

Marc Pollefeys

Andreas Geiger

• **2D Plane Encoder**: Use a local PointNet to process input, project onto canonical plane

- **2D Plane Encoder**: Use a local PointNet to process input, project onto canonical plane
- **2D Plane Decoder**: Processed by U-Net, query features via bilinear interpolation

- 2D Plane Encoder: Use a local PointNet to process input, project onto canonical plane
- **2D Plane Decoder**: Processed by U-Net, query features via bilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

- **2D Plane Encoder**: Use a local PointNet to process input, project onto **3-canonical planes**
- **2D Plane Decoder**: Processed by U-Net, query features via bilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Main Idea – 3D

• **3D Volume Encoder**: Use a local PointNet to process input, volumetric feature encoding

Main Idea – 3D

- **3D Volume Encoder**: Use a local PointNet to process input, volumetric feature encoding
- **3D Volume Decoder**: Processed by 3D U-Net, query features via trilinear interpolation
- Occupancy Readout: Shallow occupancy network $f_{\theta}(\cdot)$

Comparison

Results

Object-Level Reconstruction

Training Speed

Training Speed

• Trained and evaluated on synthetic rooms

Input

• ONet fails on room-level reconstruction

Input

• SPSR requires surface normals, output is noisy

Input

• Our method preserves better details

Input

Ours

Large-Scale Reconstruction

Scene size: 15.7m x 12.3m x 4.5m

Results on Matterport3D

- Fully convolutional model
- Trained on synthetic crops
- Sliding-window evaluation
- Scale to any scene size

Our reconstruction output

Large-Scale Reconstruction

Scene size: 15.7m x 12.3m x 4.5m

Results on Matterport3D

- Fully convolutional model
- Trained on synthetic crops
- Sliding-window evaluation
- Scale to any scene size

Our reconstruction output
Take-home Messages

- Introduce 3 different expressive hybrid representations for neural fields
- CNN's translation equivariance enables to reconstruct large scenes
- The "tri-plane" representation became VERY popular
 - Especially in the **NeRF era**, see e.g. EG3D [CVPR'21], TensoRF [ECCV'22]

Limitations

• Not rotational equivariance

Concurrent Works IF-Net will be Local implicit Grids Cabinet Chair Lamp Table Cabinet Sofa Plane Table Lamp

Chibane et al.: Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion. CVPR 2020 Jiang et al.: Local Implicit Grid Representations for 3D Scenes. CVPR 2020

Follow-up works: Neural Kernel Fields (NKF)

Prediction:

Follow-up works: Neural Kernel Fields (NKF)

In-category reconstruction

Out-of-category reconstruction

Generalization to scanned scenes

Follow-up works: NKSR

Huang et al.: Neural Kernel Surface Reconstruction. CVPR 2023

Follow-up works: NKSR

Follow-up works: EG3D

Chan et al.: Efficient Geometry-aware 3D Generative Adversarial Networks. CVPR 2021

Follow-up works: TensoRF

Chen et al.: <u>TensoRF: Tensorial Radiance Fields</u>. ECCV 2022

Follow-up works: HexPlane

Represent dynamic 3D scenes by decomposing a 4D spacetime grid into six feature planes \Rightarrow 100x faster training

Follow-up works: HexPlane

Follow-up works: ACID

The tri-plane representation is also useful for accurate robot grasping!

Jiang et al.: <u>Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations</u>. RSS 2021 Shen et al.: <u>ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object Manipulation</u>. RSS 2022 (Best Student Paper Finalist)

Let's take a step back to 3D surface reconstruction...

What is a good **3D shape representation**?

Traditional Explicit Representations

- + Fast inference
- Discrete

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

Neural Implicit Representations

- Continuous, watertight
- Slow inference
- Difficult to initialize

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

How can we benefit from both worlds?

Shape As Points (SAP) - Hybrid Representation

- Fast inference
- Easy initialization

Shape As Points A Differentiable Poisson Solver

Chiyu "Max" Jiang

Yiyi Liao

o Michael Niemeyer

Marc Pollefeys

Andreas Geiger

Duality between oriented point clouds and 3D dense geometry

Differentiable Poisson Solver

Intuition of Poisson Equation

$$\nabla^2 \chi := \nabla \cdot \nabla \chi = \nabla \cdot \mathbf{v}$$

Our Poisson Solver

$$\nabla^2 \chi := \nabla \cdot \nabla \chi = \nabla \cdot \mathbf{v}$$

• **Discretization** allows to invert the divergence operator

$$\chi = (\nabla^2)^{-1} \nabla \cdot \mathbf{v}$$

- **Spectral methods** to solve the Poisson equation
 - Derivatives of signals in spectral domain are computed analytically
 - Fast Fourier Transform (FFT) are highly optimized on GPUs/TPUs
 Only 25-line codes

$$\tilde{\mathbf{v}} = \mathrm{FFT}(\mathbf{v}) \longrightarrow \tilde{\chi} = \tilde{g}_{\sigma,r}(\mathbf{u}) \odot \frac{i\mathbf{u} \cdot \tilde{\mathbf{v}}}{-2\pi \|\mathbf{u}\|^2} \longrightarrow \chi' = \mathrm{IFFT}(\tilde{\chi})$$

How can we benefit from the differentiablity of DPSR?

First Application Optimization-based 3D Surface Reconstruction from <u>unoriented</u> point clouds

Input an initial oriented point cloud (noisy / incomplete observations)

 \mathbf{p}

Pipeline - Backward Pass

$$\frac{\partial \mathcal{L}_{\text{CD}}}{\partial \mathbf{p}} = \frac{\partial \mathcal{L}_{\text{CD}}}{\partial \mathbf{p}_{\text{mesh}}} \frac{\partial \mathbf{p}_{\text{mesh}}}{\partial \chi} \frac{\partial \chi}{\partial \mathbf{p}}$$

Pipeline

Points and Normals

Comparison

Unoriented Point Clouds

GT Mesh

Comparison

Unoriented Point Clouds

Point2Mesh

Runtime: 62 mins

Hanocka, Metzer, Giryes, Cohen-Or: Point2Mesh: A Self-Prior for Deformable Meshes. SIGGRAPH, 2020
Comparison

Unoriented Point Clouds

Runtime: 30 mins

Gropp, Yariv, Haim, Atzmon and Lipman: Implicit Geometric Regularization for Learning Shapes. ICML, 2020

Comparison

Unoriented Point Clouds

Runtime: ~6 mins

Comparison

SPSR

Runtime: ~9 sec

SAP

Runtime: ~6 mins

Kazhdan and Hoppe: Screened Poisson Surface Reconstruction. SIGGRAPH, 2013

Can we further leverage the **differentiability** of the Poisson solver for **deep neural networks**?

SAP for Learning-based 3D Reconstruction

Results

Inputs

GT Mesh

R2N2 15 ms

AtlasNet

GT Mesh

ConvONet 327 ms

GT Mesh

ConvONet 327 ms

Benefit of Geometric Initialization

Chamfer distance over the training process

Iterations	10K	50K	100K	200K	Best
ConvONet Ours	0.082 0.041	0.058 0.036	0.055 0.035	0.050 0.034	0.044 0.034

SAP converges much faster!

- SAP is a hybrid representation that is interpretable, topology agnostic, and enables fast inference
- Our Poisson solver is **differentiable** and **GPU-accelerated**

Limitation: Cubic memory requirements limits SAP for small scenes

NeRF is awesome!

Some existing problems...

😢 Very slow rendering speed

Mildenhall*, Srinivasan*, Tancik* et al: <u>NeRF : Representing Scenes as Neural Radiance Fields for View Synthesi</u>s. ECCV 2020

How to speed up NeRF rendering?

Combine Explicit with Implicit Representations!

SmallNeRF

KiloNeRF

KiloNeRF Speeding up NeRF with Thousands of Tiny MLPs

Christian Reiser

Songyou Peng

Yiyi Liao

Andreas Geiger

Key Idea

- Partition a scene into a 16^3 uniform grid
- Each grid cell is represented by a tiny MLP

KiloNeRF: ~12 kFLOPs

87x reduction in FLOPs!

KiloNeRF

Training:

- 1. Distill a trained NeRF model into our KiloNeRF model
 - Randomly sampled points, their predicted alpha & color values should match!
- 2. Finetune the thousand MLPs on training images

KiloNeRF

Training:

- 1. Distill a trained NeRF model into our KiloNeRF model
 - Randomly sampled points, their predicted alpha & color values should match!
- 2. Finetune the thousand MLPs on training images

Inference:

- 1. Empty Space Skipping (ESS) with a pre-computed 256³ occupancy grid
- **2. Early Ray Termination (ERT)**: when transmittance < ε, stop!
- 3. Evaluate tiny MLPs in parallel

Method	Render time \downarrow	Speedup \uparrow	
NeRF	56185 ms	_	
NeRF + ESS + ERT	788 ms	71	
KiloNeRF	22 ms	2554	

Results

https://github.com/creiser/kilonerf

Comparison to Concurrent Works

Туре	Neural	Tabulation-based				
Method	KiloNeRF	PlenOctree	SNeRG	FastNeRF		
GPU Memory	< 100 MB	1930 MB	3442 MB	7830 MB		

 \Rightarrow KiloNeRF has a larger potential for large-scale NVS!

Yu et al.: <u>PlenOctrees For Real-time Rendering of Neural Radiance Fields</u>. ICCV 2021 Hedman et al.: <u>Baking Neural Radiance Fields for Real-Time View Synthesis</u>. ICCV 2021 Garbin et al.: <u>FastNeRF: High-Fidelity Neural Rendering at 200FPS</u>. ICCV 2021

Follow-up Works of KiloNeRF

BlockNeRF applied our idea for city-level NVS ©

Tancik et al.: <u>Block-NeRF: Scalable Large Scene Neural View Synthesis</u>. CVPR 2022

Take-home Message

- Speed up NeRF significantly (~2000x) without loss of quality
- A memory more friendly representation!

Limitations

- Only work on bounded scenes
- Expensive training time
Plenoxels

- Directly optimize a view-dependent sparse voxel model
- Train a scene in <u>11 mins</u>

Direct Voxel Grid Optimization (DVGO)

Coarse iters.: 1 Eps. time: 00:00 Coorse iters.: 1 Eps. time: 00:00 Coarse iters.: 1 Eps. time: 00:00

- Dense voxel grid for density (geometry), a feature grid with a shallow MLP for appearance
- Train a scene in <u>15 mins</u>

Sun et al.: Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction. CVPR 2022

- Multi-res Hash Encoding + shallow MLP + excellent engineering
- Train a scene in **seconds**!

Müller et al.: Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. SIGGRAPH 2022 Best Paper Award

What is still missing for NeRF?

Always assume camera poses given!

RGB-D Sequences

40x Speed

Neural Implicit Scalable Encoding for SLAM

CVPR 2022

Zihan Zhu* Songyou Peng* Viktor Larsson Weiwei Xu Hujun Bao Zhaopeng Cui Martin R. Oswald Marc Pollefeys

* Equal Contributions

iMAP [Sucar et al., ICCV'21]

First neural implicit-based online SLAM system

iMAP [Sucar et al., ICCV'21]

- Fail when scaling up to larger scenes
- Global update → Catastrophic forgetting
- Slow convergence

Again, can implicit-explicit representations help?

NICE-SLAM

Applicable to large-scale scenes
Local update → No forgetting problem
Fast convergence

Pipeline

Input RGB

Results

NICE-SLAM

4x Speed

NICE-SLAM

10x Speed

Note: Runtime evaluation setting from iMAP paper, not the best-performing setting

Take-home Message

- Neural explicit-implicit representation again helps!
- Hierarchical feature grids + a tiny MLP seems to be a trend!

Limitations

- Requires depths as input
- Still not real-time

Follow-up Works: VoxFusion

- Gradually create voxel feature grids near to the surface
- Also more memory and time efficient

Yang et al.: Vox-Fusion: Dense Tracking and Mapping with Voxel-based Neural Implicit Representation. ISMAR 2022

Follow-up Works: ESLAM

- My lovely tri-planes as the scene representation!
- Run 10x faster and 10x less memory

Follow-up Works: H2-Mapping

- Octree SDF representation + multi-res hash encoding
- Better engineering ⇒ real-time NeRF-based mapping

Yang et al.: <u>H2-Mapping: Real-time Dense Mapping Using Hierarchical Hybrid Representation</u>. Arxiv, June 2023

Related Works: Neuralangelo

- SDF representation + multi-res hash encoding
- Great engineering effort \Rightarrow High-fidelity large-scale outdoor reconstruction

Final Remarks

We introduced many neural explicit-implicit representations:

- Single/multi-res feature grids + MLP
- Tri-plane + MLP
- Feature octrees + MLP
- Multi-res hash encoding + MLP
- Grid of MLPs
- Poisson solver to convert point clouds \Rightarrow indicator grids

..... (There are soooooo many forms of neural explicit-implicit representations)

Final Remarks

Neural explicit-implicit representations are AWESOME!!!

- Memory efficiency
- Fast training/testing speed
- Fast convergence
- Scalable, and robust to large scenes

..... Discover more yourself 😊

They truly shine through great engineering efforts!

A Unified Framework for Surface Reconstruction

Zehao Yu¹ Anpei Chen^{1,2} Bozidar Antic¹ Songyou Peng^{2,3} Apratim Bhattacharyya¹ Michael Niemeyer^{1,3} Siyu Tang² Torsten Sattler⁴ Andreas Geiger^{1,3} ¹University of Tübingen ²ETH Zurich ³MPI for Intelligent Systems, Tübingen ⁴Czech Technical University in Prague

https://github.com/autonomousvision/sdfstudio

Sampler Surface-guided [UniSurf] Error-bounded [VolSDF] Hierachical [NeRF, NeuS] Voxel-surface Guided [NeuralReconW] Proposal Network [MipNeRF-360] Occupancy Grid [Instant-ngp]

We build on top of the amazing NeRFStudio!

Results on outdoor scenes: Neus-facto

Results on outdoor scenes: BakedSDF

Results on outdoor scenes: Bakedangelo

Results on outdoor scenes: Bakedangelo

Results on indoor scenes: Mono-NeuS

Results on indoor scenes: MonoSDF

Results on RGBD data

Results on object dataset

Dive into Neural Implicit-Explicit 3D Representations and Their Applications

Songyou Peng

pengsongyou.github.io

ETH Zurich and Max Planck Institute for Intelligent Systems

Symposium of Geometry Processing July 2, 2023

Input 3D Geometry

Input 3D Geometry

wall 📃	floor	📕 cabir	net 📒	bed	📕 cha	air	sof	a	table	door	
window	📕 cou	nter	curtain		toilet		sink	k	bathtub	other	unlabeled

Traditional Semantic Segmentation

Only train and test on a few common classes

Input 3D Geometry

- Affordance prediction
- Material identification
- Physical property estimation
- Rare object retrieval
- Activity site prediction
- Fine-grained semantic segmentation
- Many more...

3D Scene Understanding Tasks w/o Labels

3D Scene Understanding with Open Vocabularies

Songyou Peng

Kyle Genova

Chiyu "Max" Jiang

Andrea Tagliasacchi

Marc Pollefeys

Tom Funkhouser

SFU

Key Idea: Co-embed 3D features with CLIP features

Radford et al.: Learning Transferable Visual Models From Natural Language Supervision. ICML 2021

Key Idea: Co-embed 3D features with CLIP features

152

Key Idea: Co-embed 3D features with CLIP features

Note: bold word embeddings are approximate

How to Learn Such Text-Image-3D Co-Embeddings?

Step 1: Multi-view Feature Fusion

Ghiasi, Gu, Cui, Lin: <u>Scaling Open-Vocabulary Image Segmentation with Image-Level Labels</u>. ECCV 2022
Li, Weinberger, Belongie, Koltun, Ranftl: <u>Language-driven Semantic Segmentation</u>. ICLR 2022

Step 2: 3D Distillation

3D Geometry

Step 3: 2D-3D Ensemble

Choose the feature with

2D-3D Ensemble Features

(visualize with PCA)

the highest max score among all prompts

Open-Vocabulary, Zero-shot 3D Semantic Segmentation

wall

other

Our Zero-shot 3D Segmentation (160 classes)

wall	cabinet	📕 bed	📕 pot	bathtub	dresser	stand	clock	tissue box	furniture	🔳 soap	📕 cup	hanger	📒 urn	paper towel dispenser	toy
door	curtain	night stand	desk	book	📕 rug	drawer	stove	tv stand	air conditioner	thermostat	ladder	candlestick	ala constitue plate	lamp shade	foot rest
ceiling	📕 table	toilet	box 📃	📕 air vent	ottoman	container	washing machine	shoe	📕 fire extinguisher	radiator	garage door	📕 light	pool table	car	📕 soap dish
floor	plant	column	coffee table	faucet	bottle	light switch	shower curtain	heater	curtain rod	📕 kitchen island	📕 piano	scale	јаскет	📘 toilet brush	cleaner
picture	mirror	banister	counter	photo	refridgerator	purse	📕 bin	headboard	printer	paper towel	board	bag	bottle of soap	drum	computer
window	towel	stairs	bench	📕 toilet paper	bookshelf	📕 door way	chest	bucket	telephone	sheet	rope	📕 display case	water cooler	whiteboard	knqb61
📕 chair	sink	stool	📕 garbage bin	📕 fan	wardrobe	basket	microwave	candle	blanket	glass	ball	toilet paper holder	📕 tea pot	📕 range hood	paper
pillow	shelves	vase	fireplace	railing	pipe	chandelier	blinds	📕 flower pot	handle	dishwasher	excercise equipment	📕 tray	stuffed animal	candelabra	projector

Comparison

Comparison

Ablation

Image-based 3D Scene Query

mage Queries Control III Given 3D Geometry

Interactive Demo

Open-vocabulary 3D Scene Exploration

Take-home Message

- We enable a wide range of applications by open-vocabulary queries
- This can hopefully influence how people train 3D scene understanding systems in the future
- Our real-time demo already shows the **possibility to directly apply to AR/VR**