Learning Neural Scene Representations for 3D Reconstruction and Understanding

Songyou Pengow at 50 fps on a GTX 1080 T

ETH Zurich and Max Planck Institute for Intelligent Systems

Who Am I?

- Final-year PhD Student
 - Marc Pollefeys
 - Andreas Geiger

pengsongyou.github.io

- Internships during PhD
 2021: Michael Zollhoefer
 - 2022: Tom Funkhouser

Meta Google Research

 Before PhD, worked in Singapore, and interned at INRIA and TUM

Motivation

•

Input Images

3D Reconstruction

Motivation

3D Reconstruction

3D Scene Understanding

My PhD Topics: Neural Scene Representations for <u>3D reconstruction</u> and <u>3D scene understanding</u>

KiloNeRF Interactive Viewe

runs now at 50 fps on a GTX 1080 Ti

KiloNeRF

Ours **UNISURF** ICCV 2021 (Oral)

Convolutional Occupancy Nets

ECCV 2020 (Spotlight)

Shape As Points NeurIPS 2021 (Oral)

MonoSDF NeurIPS 2022

OpenScene CVPR 2023

My PhD Topics: Neural Scene Representations for <u>3D reconstruction</u> and <u>3D scene understanding</u>

Ours

MonoSDF NeurIPS 2022 NICE-SLAM CVPR 2022

floor

OpenScene CVPR 2023

NeRF is awesome!

Some existing problems...

Poor underlying geometryCamera poses needed

Mildenhall*, Srinivasan*, Tancik* et al: NeRF : Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020

MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction

Zehao Yu

Songyou Peng

Michael Niemeyer

Torsten Sattler

Andreas Geiger

AX PLANCK INSTITUTE

CTU CZECH TECHNICA UNIVERSITY IN PRAGUE

Neural Implicit Surfaces with Volume Rendering

Oechsle, Peng, Geiger: <u>UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction</u>. ICCV, 2021
 Wang, Liu, Liu, Theobalt, Komura, Wang: <u>NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction</u>. NeurIPS, 2021
 Yariv, Gu, Kasten, Lipman: <u>Volume rendering of neural implicit surfaces</u>. NeurIPS, 2021

Neural Implicit Surfaces with Volume Rendering

VolSDF

- Fails with sparse input views
- Poor results in large-scale indoor scenes

Yariv, Gu, Kasten, Lipman: Volume rendering of neural implicit surfaces. NeurIPS, 2021

Manage to reconstruct with sparse views

Nice 3D reconstruction in large-scale indoor scenes

Yu, Peng, Niemeyer, Sattler, Geiger: MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction. NeurIPS, 2022

Shape-Appearance Ambiguity

There exists an infinite number of photo-consistent explanations for input images!

Zhang, Riegler, Snavely, Koltun: NeRF++: Analyzing and Improving Neural Radiance Fields. ArXiv, 2020

Shape-Appearance Ambiguity

There exists an infinite number of photo-consistent explanations for input images!

Exploit monocular geometric priors

Zhang, Riegler, Snavely, Koltun: <u>NeRF++: Analyzing and Improving Neural Radiance Fields</u>. ArXiv, 2020

Depth Map Prediction from a Single Image

Eigen, Puhrsch and Fergus: Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. NIPS, 2014

Omnidata

[Ranftl et al. 2021]

Eftekhar, Sax, Malik and Zamir: Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans. ICCV, 2021.

Omnidata

Eftekhar, Sax, Malik and Zamir: Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans. ICCV, 2021.

Monocular Geometric Cues

Ablation Study

		Normal C.↑	Chamfer- $L_1 \downarrow$	F-score ↑						
MLP	No Cues	86.48	6.75	66.88	0.8					
	Only Depth	90.56	4.26	76.42						
	Only Normal	91.35	3.19	85.84	<u>କ</u> 0.6					
	Both Cues	92.11	2.94	86.18	sco				•	
Multi-Res. Grids	No Cues	87.95	5.03	78.38	ட் 0.4			— — MLP		
	Only Depth	90.87	3.75	80.32	0.0	i /		— MLP	(w/ Cues))
	Only Normal	89.90	3.61	81.28	0.2			Gride		c)
	Both Cues	90.93	3.23	85.91	2			Grius	, (w/ Cue	5)
						5	20 Iterat	40 ions (×10 ³)	60	

- Monocular cues improve reconstruction results significantly
- Combining **depth & normal** leads to best performance
- Monocular cues can improve **convergence speed**

Baseline Comparisons on ScanNet

Ours

Multi-Res. Feature Grids with <u>High-Res. Cues</u>

Baseline Comparisons on DTU (3-views)

Ours

Take-home Message

https://niujinshuchong.github.io/monosdf/

DTU (3 views)

ScanNet

Tanks and Temples

- Monocular cues improve reconstruction results and speed up optimization
- Inspire applications in other fields [GOOD, ICLR 2023]
 - Limitation: Still require camera poses given :(

RGB-D Sequences

40x Speed

Neural Implicit Scalable Encoding for SLAM

CVPR 2022

Zihan Zhu* Songyou Peng* Viktor Larsson Weiwei Xu Hujun Bao Zhaopeng Cui Martin R. Oswald Marc Pollefeys

* Equal Contributions

iMAP [Sucar et al., ICCV'21]

First neural implicit-based online SLAM system

iMAP [Sucar et al., ICCV'21]

- Fail when scaling up to larger scenes
- Global update → Catastrophic forgetting
- Slow convergence

NICE-SLAM

Applicable to large-scale scenes
 Local update → No forgetting problem
 Fast convergence

Predicted Poses
 GT Poses

Pipeline

Input RGB

Results

NICE-SLAM

4x Speed

NICE-SLAM

10x Speed

Note: Runtime evaluation setting from iMAP paper, not the best-performing setting

Take-home Message

- A NICE NeRF-based SLAM system for indoor scenes
- Hierarchical feature grids + a tiny MLP seems to be a trend!
 - Instant-NGP [SIGGRAPH'22 Best Paper]

Limitations

- <u>Requires depths as input</u>
- Only bounded scenes
- Still not real-time

NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM

Input 3D Geometry

Input 3D Geometry

wall 📃	floor	📕 cabir	net 📒	bed	📕 cha	air	sof	а	table	door	
window	📕 cou	nter	curtain		toilet		sink	k	bathtub	other	unlabeled

Traditional Semantic Segmentation

Only train and test on a few common classes

Input 3D Geometry

- Affordance prediction
- Material identification
- Physical property estimation
- Rare object retrieval
- Activity site prediction
- Fine-grained semantic segmentation
- Many more...

3D Scene Understanding Tasks w/o Labels

3D Scene Understanding with Open Vocabularies

Songyou Peng

Kyle Genova

Chiyu "Max" Jiang

Andrea Tagliasacchi

Marc Pollefeys

Tom Funkhouser

SFU

Key Idea: Co-embed 3D features with CLIP features

Radford et al.: Learning Transferable Visual Models From Natural Language Supervision. ICML 2021

Key Idea: Co-embed 3D features with CLIP features

52

Key Idea: Co-embed 3D features with CLIP features

Note: bold word embeddings are approximate

How to Learn Such Text-Image-3D Co-Embeddings?

Step 1: Multi-view Feature Fusion

[1] Ghiasi, Gu, Cui, Lin: <u>Scaling Open-Vocabulary Image Segmentation with Image-Level Labels</u>. ECCV 2022
 [2] Li, Weinberger, Belongie, Koltun, Ranftl: <u>Language-driven Semantic Segmentation</u>. ICLR 2022

Step 2: 3D Distillation

3D Geometry

Step 3: 2D-3D Ensemble

2D-3D Ensemble Features

(visualize with PCA)

Choose the feature with the highest max score among all prompts

Open-Vocabulary, Zero-shot 3D Semantic Segmentation

wall

other

Our Zero-shot 3D Segmentation (160 classes)

wall	cabinet	📕 bed	pot	bathtub	dresser	stand	clock	tissue box	furniture	soap	📕 cup	hanger	📒 urn	paper towel dispenser	toy
door	📒 curtain	night stand	desk	book	rug	drawer	stove	tv stand	air conditioner	thermostat	ladder	candlestick	ala constitue plate	lamp shade	foot rest
ceiling	table	toilet	box	📕 air vent	ottoman	container	washing machine	shoe	📕 fire extinguisher	radiator	garage door	📕 light	pool table	car	📕 soap dish
floor	plant	column	coffee table	faucet	bottle	light switch	shower curtain	heater	curtain rod	📕 kitchen island	📕 piano	scale	јаскет	📘 toilet brush	cleaner
picture	mirror	banister	counter	photo	refridgerator	purse	📕 bin	headboard	printer	paper towel	board	📕 bag	bottle of soap	drum	computer
window	towel	stairs	bench	📕 toilet paper	bookshelf	📕 door way	chest	bucket	telephone	sheet	rope	📕 display case	📒 water cooler	whiteboard	knob61
📕 chair	sink	stool	📕 garbage bin	📕 fan	wardrobe	📒 basket	microwave	candle	blanket	glass	ball	📕 toilet paper holder	📕 tea pot	📕 range hood	paper
pillow	shelves	vase	fireplace	railing	pipe	chandelier	blinds	📕 flower pot	handle	dishwasher	excercise equipment	📕 tray	stuffed animal	candelabra	projector

Comparison

Comparison

Ablation

Image-based 3D Scene Query

mage Queries Given 3D Geometry

Interactive Demo

Open-vocabulary 3D Scene Exploration

Take-home Message

- We enable a wide range of applications by open-vocabulary queries
- This can hopefully influence how people train 3D scene understanding systems in the future
- Our real-time demo already shows the **possibility to directly apply to AR/VR**

My PhD Topics: Neural Scene Representations for <u>3D reconstruction</u> and <u>3D scene understanding</u>

Ours

MonoSDF NeurIPS 2022 NICE-SLAM CVPR 2022 OpenScene CVPR 2023

floor

Learning Neural Scene Representations for 3D Reconstruction and Understanding

Songyou Peng

Ours

floo

MonoSDF NeurIPS 2022 niujinshuchong.github.io/monosdf/

NICE-SLAM CVPR 2022 pengsongyou.github.io/nice-slam OpenScene CVPR 2023 pengsongyou.github.io/openscene

Thank you!