A "Splatacular" Year of 3D Reconstruction

Songyou Peng Google DeepMind

> Stanford University May 1, 2025

Intelligent systems interact with 3D environments

3D Reconstruction

Create digital twins from real scenes

3D Scene Understanding

Analyze the scene digitally

Video Credit: YouTube - Real time archviz apartment

NICE-SLAM CVPR 2022 NICER-SLAM 3DV 2024 (Oral)

UNISURF ICCV 2021 (Oral) **OpenScene** CVPR 2023 ₂

ConvOccNet ECCV 2020 (Spotlight)

MonoSDF NeurIPS 2022

Topic #1: Reconstruct Complex Scenes

NICE-SLAM CVPR 2022 **NICER-SLAM** 3DV 2024 (Best Honor. Men.) **UNISURF** ICCV 2021 (Oral)

OpenScene CVPR 2023 ₃

Topic #2: Fast Inference

ConvOccNet ECCV 2020 (Spotlight MonoSDF NeurIPS 2022

Shape As Points NeurIPS 2021 (Oral)

KiloNeRF

OpenScene CVPR 2023 4

NICER-SLAM 3DV 2024 (Oral) **UNISURF** ICCV 2021 (Oral)

Topic #3: **Reconstruct from 2D Observations**

NICE-SLAM CVPR 2022

NICER-SLAM 3DV 2024 (Best Paper Honorable)

UNISURF ICCV 2021 (Oral)

NICE-SLAM CVPR 2022 **NICER-SLAM** 3DV 2024 (Oral) UNISURF ICCV 2021 (Oral)

OpenScene

CVPR 2023 6

ConvOccNet ECCV 2020 (Spotlight)

MonoSDF NeurIPS 2022

Shape As Points NeurIPS 2021 (Oral)

KiloNeRF

NICE-SLAM CVPR 2022 **NICER-SLAM** 3DV 2024 (Best Paper Honorable) UNISURF ICCV 2021 (Oral)

My PhD Thesis

Already Tackling Some Challenges in 3D Reconstruction

- Reconstruct at scale
- Reconstruct at speed
- Reconstruct from 2D observations

An Ideal 3D Reconstruction Pipeline Instant, Pose-Free, Real-World 3D Everywhere **(**) Dynamic **Pose-Agnostic** Feedforward

Fast Rendering

Arbitrary Lengths

Lighting-Robust

"People overestimate what they can do in <u>one year</u>, and underestimate what they can do in <u>ten years</u>."

--- Bill Gates

I Defended on Nov 2023

How much can one push forward until Nov 2024?

What Came Up in 2023?

3DGS

Input Posed Images

Kerbl*, Kopanas*, Leimkühler, Drettakis: 3D Gaussian Splatting for Real-Time Radiance Field Rendering. SIGGRAPH 2023

What Came Up in 2023?

Wang, Leroy, Cabon, Chidlovskii, Revaud: <u>DUSt3R: Geometric 3D Vision Made Easy</u>. CVPR 24 (appeared on arXiv at Dec 2023)

An Ideal 3D Reconstruction Pipeline Instant, Pose-Free, Real-World 3D Everywhere **(**) Dynamic **Pose-Agnostic** Feedforward

Fast Rendering

Arbitrary Lengths

Lighting-Robust

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

Feedforward

Pose-Agnostic

Dynamic

Fast Rendering

Arbitrary Lengths

Lighting-Robust

Feedforward 3D Gaussian Splatting

DepthSplat Connecting Gaussian Splatting and Depth

haofeixu.github.io/depthsplat/

CVPR 2025

Haofei Xu

Songyou Peng

Fangjinhua Wang

Hermann Blum

Daniel Barath

Andreas Geiger M

Marc Pollefeys

Motivation

pixelSplat / MVSplat

- Hulti-view Consistent
- Lack robustness

Depth Anything v2

Robust

- Unknown scale & shift

Can they benefit each other?

Pipeline

Feedforward View Synthesis

DepthSplat

6 Input Views

Feedforward View Synthesis

DepthSplat

12 Input Views

Comparison

Input

MVSplat

DepthSplat

DepthSplat is significantly more robust!

Depth \rightarrow Gaussian Splatting

Image 1: Depth

Image 2: Depth

Novel View

Gaussian Splatting → Depth

- Unsupervised depth pre-training on RealEstate10K
- Supervised depth fine-tuning on TartanAir & VKITTI2

Validation curves of depth prediction error

Take-home Messages

- Depth and Gaussian splatting are helping each other!
- Feed-forward Gaussian splatting for large-scale scenes
- A few posed images as input... This is not a practical setting!

Non-trivial to get camera poses!

Image 1

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

Feedforward

Pose-Agnostic

Dynamic

Fast Rendering

Arbitrary Lengths

Lighting-Robust

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

Goal: Unposed Feedforward 3DGS

Input Images w/o poses

No Pose, No Problem 3 **Surprisingly Simple 3D Gaussian Splats** from Sparse Unposed Images (a.k.a NoPoSplat)

ICLR 2025 (Oral, top 1.8%)

Botao Ye

Sifei Liu

Haofei Xu

Xueting Li

Marc Pollefeys Ming-Hsuan Yang Songyou Peng

Previous Feed-forward 3DGS

Charatan, Li, Tagliasacchi, Sitzmann: pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction. CVPR 2024

Canonical Prediction

Does a similar philosophy apply to Gaussians?

Point Maps

- Discrete representation
- Ground truth depth needed

- 3DGS
- 🛉 Novel view synthesis

NoPoSplat

Novel View Synthesis

Architecture

Issue 1: Blurry Rendering

Issue 1: Blurry Rendering Solution: Add a shortcut!

Issue 3: Inaccurate Pose Estimation Solution: coarse-to-fine estimation

- <u>Coarse stage</u>: run RANSAC-PnP on Gaussian centers
- <u>Refine stage</u>: optimize with photometric loss

PnP	Photometric	5°	10°	20°
\checkmark	\checkmark	0.318	0.538	0.717
\checkmark		0.287	0.506	0.692
	\checkmark	0.017	0.027	0.051

Ablation

Canonical Gaussian prediction

Local

Canonical

Ablation

Image shortcut leads to sharper details

No Shortcut

Ablation Intrinsic embedding

What is More...

Accurate Pose Estimation

Evaluation on ScanNet

NoPoSplat (Trained on Re10k)
NoPoSplat (Trained on Re10k + DL3DV)

High Quality Geometry

NoPoSplat (pose-free)

MVSplat (pose-required)

Appearance Quality

Better even than pose-required methods!

Appearance Quality

Input Views

MVSplat

NoPoSplat

Cross-Dataset Generalization

In-the-Wild Data Images extracted from OpenAI Sora

Input Images

Novel Views

In-the-Wild Data Images from Tanks & Temples

Input Images

Novel Views

In-the-Wild Data iPhone images

Input Images

Novel Views

Take-home Messages

- Feedforward NVS can be surprisingly simple!
- Side product: SoTA relative pose estimation
- Works well with any static scenes

Not practical enough!

Motivation

How to obtain **distractor-free 3D reconstruction** from **casually captured & long** image sequences **in the wild**?

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

Feedforward

Pose-Agnostic

G Dynamic

Fast Rendering

Arbitrary Lengths

Lighting-Robust

Uncertainty

Input RGB

Uncertainty Map

How to learn a good uncertainty map?

DINO v2

- A 2D foundation model producing **universal features**
- Preserve temporal-spatial consistency

How to leverage the DINO v2 to model uncertainty for 3D reconstruction?

NeRF On-the-go

Exploiting Uncertainty for Distractor-free NeRFs in the Wild

Weining Ren*

Zihan

Zhu*

CVPR 2024

Boyang Sun

Julia Chen

Marc Pollefeys

Songyou Peng

Pipeline

RGB Input

Pipeline

To Learn the Uncertainty MLP...

Train RGB

Why SSIM?

Leverage structure information when RGB is similar!

62

Pipeline

Results

Train Station - Input Images

Train Station - Rendering Comparisons

Occlusion Ratio: **High**

Patio-High - Rendering Comparisons

Analysis

Analysis - Efficiency

Sabour et al.: <u>RobustNeRF: Ignoring Distractors with Robust Losses</u>. CVPR, 2023 (Highlight)

Analysis - Efficiency

25K

100K 50K NeRF On-the-go (Ours)

71

Analysis – Static Scene

RobustNeRF

Ours

MipNeRF 360

GT
Take-home Messages

- On-the-go module is plug-and-play for all NeRF methods
 - Integrated into NeRFStudio

Take-home Messages

- On-the-go module is plug-and-play for all NeRF methods
 - Integrated into NeRFStudio
- 2D foundation model (DINOv2) rocks!

However, it is VERY SLOW

In-the-Wild

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

Feedforward

Pose-Agnostic

G Dynamic

Fast Rendering

Arbitrary Lengths

Lighting-Robust

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

Feedforward

Pose-Agnostic

G Dynamic

Fast Rendering

Arbitrary Lengths

Lighting-Robust

3DGS

from casually captured images in the wild

- Bobustly handle arbitrary occlusions
- Odel any illumination changes
- 🙂 Real-time rendering!

WildGaussians 3D Gaussian Splatting In the Wild

NeurIPS 2024

Jonas Kulhan<mark>ek</mark> Songyou Peng

Zuzana Kukelova Marc Pollefeys

Torsten Sattler

Final rendering

Pipeline

Op to ptiantizingvith center that inty

Phototourism Dataset

K-Planes

Wild Gaussians

Rendering Speed

FPS 31

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

Feedforward

Pose-Agnostic

G Dynamic

Fast Rendering

Arbitrary Lengths

Lighting-Robust

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

WildGS-SLAM Monocular Gaussian Splatting SLAM in Dynamic Environments

CVPR 2025

Jianhao Zheng*

Zihan Zhu*

Valentin Bieri

Marc Pollefeys

Songyou Peng

Iro Armeni

Online mapping

— GT traj — Est. traj

Input: RGB frames

Uncertainty

Rendered (online)

Rendered (final)

WildGS-SLAM

Results

Umbrella

Input Frames

Traj. Error Colormap

MonoGS [CVPR' 24]

reference

Splat-SLAM [arXiv' 24]

WildGS-SLAM (Ours)

Results

Tower

Input Frames

Rendered (MonoGS)

Rendered (Ours)

Rendered (Splat-SLAM)

Uncertainty (Ours)

An Ideal 3D Reconstruction Pipeline

Instant, Pose-Free, Real-World 3D Everywhere

Opinion

3D static reconstruction is almost at the last mile

Opinion

3D static reconstruction is almost at the last mile

[CVPR'25 Oral]

MegaSaM [CVPR'25 Oral]

Challenges & Opportunities

How to robustly handle long sequences?

Dynamic Videos

Unstructured Photo Collections

CUT3R [CVPR'25 Oral]

Challenges & Opportunities

4D (3D dynamic) reconstruction is still very hard, especially for NVS

MegaSaM [CVPR'25 Oral]

Gaussian-Flow [CVPR'24 Highlight]

Challenges & Opportunities Feedforward pose estimation is not solved

Optical Flow

AnyCam [CVPR'25]

Challenges & Opportunities

How to continuously update your 3D reconstruction?

7 PM

Challenges & Opportunities Can we unify 3D reconstruction/SLAM into LLM?

Liquid [arXiv'24]

Challenges & Opportunities Interaction with 3D scenes at speed!

World Labs Demo

"People overestimate what they can do in <u>one year</u>, and underestimate what they can do in <u>ten years</u>."

--- Bill Gates

"People overestimate what they can do in <u>one year</u>, and underestimate what they can do in <u>ten years</u>."

--- Bill Gates

"People overestimate what they can do in <u>one week</u>, and underestimate what they can do in <u>one year</u>."

--- Lars Mescheder

