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Neural Implicit Scalable Encoding for SLAM
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Paper, code, and video are available at
pengsongyou.github.io/nice-slam

5. More Studies

1. Motivation 3. Pipeline
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Output: On-the-fly learn neural implicit surfaces & camera poses

IMAP [ICCV'21] NICE-SLAM

A single MLP Multi-res feature grids + tiny MLPs

4. Results
ScanNet

— Predicted Poses
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== Scalable to large-scale scenes
== Local update > No forgetting
== Fast convergence

il to scale up to larger scenes
tastrophic forgetting
== S|low convergence

IMAP* NICE-SLAM

(Our re-implementation)

IMAP* DI-Fusion NICE-SLAM

(Our re-implementation)




